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Observation: tensor hierarchy combines x

diffeomorphisms
(external)

gen. diffeomorphisms
(internal)&

In three words: symmetries for symmetries

gen. structure group F tr.

Re-purpose the tensor hierarchy to construct covariant curvature tensors 
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representation of the duality group

representation

All levels beyond -1, 0, 1 are
completely fixed by the

Jacobi identity.
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Exceptional Poláček-Siegel form
...or how to fix the frame I

nilpotent

lower-triangular connections

results in

torsioncov. cen. Riemann tensor higher (derivative) curvature 
tensors 15 / 23



Possible Link?
Cartan geometry...

...unifies Torsion and curvature in a
similar way.

Symplectic reduction...

...on the phase space of gauge theories 
has similar feature.
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Dualities revisited
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● consistent truncations
● integrable strings
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isometry isotropy

but in Generalized Geometry

with generalized Lie derivative:

and section condition for closure

Felix Klein
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manifold. Then, the following statements are equivalent:   [Ambrose, Singer 1958]

1) The manifold M is Riemannian homogenous

2) M admits a linear connection satisfying

metricRiemann tensor

frame and connection required
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Generalized coset

O(D,D) recipe to contruct gen. frame and spin connection:

1) gen. frame on H\G = mega-space

2) another isotropic subgroup F

New

● higher derivative connections from tensor hierarchy
● singularities @ fixed points of F action

degenerate/
gauged E-

model

gen. structure group

and

on double coset
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