A geometric perspective on duality symmetries in supergravity

Falk Hassler
Based on $\underline{2311.12095}$ with
Y. Sakatani

Uniwersytet
Wrocławski
NARODOWE
CENTRUM
NAUKI

Introduction

Dualities in string \& M-theory

11d SUGRA

$$
\begin{align*}
S_{\mathrm{eff}}^{(d=11)}= & \frac{1}{2 \kappa_{11}^{2}}\left[\int d^{11} x \sqrt{-G}\left(R-\frac{1}{2 \cdot 4!} F_{M_{1} \ldots M_{4}} F^{M_{1} \ldots M_{4}}\right)\right. \\
& \left.-\frac{1}{6} \int A_{3} \wedge F_{4} \wedge F_{4}\right] \tag{16.131}
\end{align*}
$$

Dualities in string \& M-theory

Dualities in string \& M-theory

Het. $E_{8} \times \mathrm{E}_{8}$
Type IIA

$$
S_{\mathrm{IIA}}=\frac{1}{2 \tilde{\kappa}_{10}^{2}} \int d^{10} x \sqrt{-G}\left[e^{-2 \Phi}\left(R+4(\nabla \Phi)^{2}-\frac{1}{2}\left|H_{3}\right|^{2}\right)-\frac{1}{2}\left|F_{2}\right|^{2}-\frac{1}{2}\left|F_{4}\right|^{2}\right]
$$

$$
-\frac{1}{4 \tilde{\kappa}_{10}^{2}} \int B_{2} \wedge d C_{3} \wedge d C_{3},
$$

$$
(16.134 a)
$$

$$
S_{\mathrm{IIB}}=\frac{1}{2 \tilde{\kappa}_{10}^{2}} \int d^{10} x \sqrt{-G}\left[e^{-2 \Phi}\left(R+4(\nabla \Phi)^{2}-\frac{1}{2}\left|H_{3}\right|^{2}\right)-\frac{1}{2}\left|F_{1}\right|^{2}-\frac{1}{2}\left|F_{3}\right|^{2}\right.
$$

$$
\begin{equation*}
\left.-\frac{1}{4}\left|F_{5}\right|^{2}\right]-\frac{1}{4 \tilde{\kappa}_{10}^{2}} \int C_{4} \wedge H_{3} \wedge F_{3} \tag{16.134b}
\end{equation*}
$$

Het. SO(32)
Type IIB

$$
S_{\mathrm{I}}=\frac{1}{2 \tilde{\kappa}_{10}^{2}} \int d^{10} x \sqrt{-G} e^{-2 \Phi}\left(R+4(\nabla \Phi)^{2}-\frac{1}{2}\left|H_{3}\right|^{2}\right)
$$

Type $\left\lvert\, \quad-\frac{1}{2 \tilde{g}_{10}^{2}} \int d^{10} x \sqrt{-G} e^{-2 \Phi} \operatorname{Tr}\left(\left|F_{\mathrm{YM}}\right|^{2}\right)\right.$,

Dualities in string \& M-theory

Het. $\mathrm{E}_{8} \times \mathrm{E}_{8}$
Type IIA

$$
S_{\mathrm{IIA}}=\frac{1}{2 \tilde{\kappa}_{10}^{2}} \int d^{10} x \sqrt{-G}\left[e^{-2 \Phi}\left(R+4(\nabla \Phi)^{2}-\frac{1}{2}\left|H_{3}\right|^{2}\right)-\frac{1}{2}\left|F_{2}\right|^{2}-\frac{1}{2}\left|F_{4}\right|^{2}\right]
$$

$$
-\frac{1}{4 \tilde{\kappa}_{10}^{2}} \int B_{2} \wedge d C_{3} \wedge d C_{3},
$$

$$
(16.134 a)
$$

$$
S_{\mathrm{IIB}}=\frac{1}{2 \tilde{\kappa}_{10}^{2}} \int d^{10} x \sqrt{-G}\left[e^{-2 \phi}\left(R+4(\nabla \Phi)^{2}-\frac{1}{2}\left|H_{3}\right|^{2}\right)-\frac{1}{2}\left|F_{1}\right|^{2}-\frac{1}{2}\left|F_{3}\right|^{2}\right.
$$

$$
\begin{equation*}
\left.-\frac{1}{4}\left|F_{5}\right|^{2}\right]-\frac{1}{4 \tilde{\kappa}_{10}^{2}} \int C_{4} \wedge H_{3} \wedge F_{3} \tag{16.134b}
\end{equation*}
$$

Type IIB
Het. SO(32)

$$
S_{\mathrm{I}}=\frac{1}{2 \tilde{\kappa}_{10}^{2}} \int d^{10} x \sqrt{-G} e^{-2 \Phi}\left(R+4(\nabla \Phi)^{2}-\frac{1}{2}\left|H_{3}\right|^{2}\right)
$$

$$
\text { Type } \left\lvert\, \quad-\frac{1}{2 \tilde{g}_{10}^{2}} \int d^{10} x \sqrt{-G} e^{-2 \Phi} \operatorname{Tr}\left(\left|F_{\mathrm{YM}}\right|^{2}\right)\right.
$$

- split spacetime into $11=\mathrm{n}+\mathrm{d}$
- split spacetime into $11=\mathrm{n}+\mathrm{d}$
- i.e. $\mathrm{d}=4$ with U -duality group $\mathrm{SL}(5)$ and the multiplets
generalized

metric $\underset{\text { Scalars }}{\text { Metric }} \quad$| $\mathcal{M}_{M N} \in \frac{\mathrm{SL}(5)}{\mathrm{SO}(5)}$ | $g_{i j}(10)$ | $C_{i j k}(4)$ | |
| :---: | :---: | :---: | :---: |
| One-forms | $\mathcal{A}_{\mu} \in \mathbf{1 0}$ | $A_{\mu}{ }^{i}(4)$ | $C_{\mu i j}(6)$ |
| Two-forms | $\mathcal{B}_{\mu \nu} \in \overline{\mathbf{5}}$ | $C_{\mu \nu i}(4)$ | $C_{\mu \nu i j k l}(1)$ |
| Three-forms | $\mathcal{C}_{\mu \nu \rho} \in \mathbf{5}$ | $C_{\mu \nu \rho}(1)$ | $C_{\mu \nu \rho i j k}(4)$ |
| Four-forms | $\mathcal{D}_{\mu \nu \rho \sigma} \in \overline{\mathbf{1 0}}$ | $C_{\mu \nu \rho \sigma i j}(6)$ | $\tilde{A}_{\mu \nu \rho \sigma i}(4)$ |

- split spacetime into $11=\mathrm{n}+\mathrm{d}$
- i.e. $\mathrm{d}=4$ with U -duality group $\mathrm{SL}(5)$ and the multiplets
generalized

metric $\underset{\text { Scalars }}{\text { Metric }} \quad$| $g_{\mu \nu}$ | $g_{\mu \nu} \in \frac{\mathrm{SL}(5)}{\mathrm{SO}(5)}$ | $g_{i j}(10)$ | $C_{i j k}(4)$ |
| :---: | :---: | :---: | :---: |
| One-forms | $\mathcal{A}_{\mu} \in \mathbf{1 0}$ | $A_{\mu}{ }^{i}(4)$ | $C_{\mu i j}(6)$ |
| Two-forms | $\mathcal{B}_{\mu \nu} \in \overline{\mathbf{5}}$ | $C_{\mu \nu i}(4)$ | $C_{\mu \nu i j k l}(1)$ |
| Three-forms | $\mathcal{C}_{\mu \nu \rho} \in \mathbf{5}$ | $C_{\mu \nu \rho}(1)$ | $C_{\mu \nu \rho i j k}(4)$ |
| Four-forms | $\mathcal{D}_{\mu \nu \rho \sigma} \in \overline{\mathbf{1 0}}$ | $C_{\mu \nu \rho \sigma i j}(6)$ | $\tilde{A}_{\mu \nu \rho \sigma i}(4)$ |

d		$E_{d(d)}$	
2	0	0	$\mathrm{SL}(2) \times \mathbb{R}^{+}$
3	$0-0$	$\mathrm{SL}(3) \times \mathrm{SL}(2)$	
4	$0-0-0$	$\mathrm{SL}(5)$	
5	$0-0-0$	$\mathrm{SO}(5,5)$	
6	$0-0-0-0$	$E_{6(6)}$	
7	$0-0-0-0-0$	$E_{7(7)}$	
8	o-0-0-0-0-0-0	$E_{8(8)}$	

- split spacetime into $11=\mathrm{n}+\mathrm{d}$
- i.e. $\mathrm{d}=4$ with U -duality group $\mathrm{SL}(5)$ and the multiplets

$\underset{\text { metric }}{\text { generalized }} \xrightarrow[\text { Scalars }]{\text { Metric }}$	$\begin{gathered} g_{\mu \nu} \\ \mathcal{M}_{M N} \in \frac{\mathrm{SL}(5)}{\mathrm{SO}(5)} \end{gathered}$	$g_{i j}(10)$	$C_{i j k}$ (4)
One-forms	$\mathcal{A}_{\mu} \in 10$	$A_{\mu}{ }^{i}$ (4)	$C_{\mu i j}$ (6)
Two-forms	$\mathcal{B}_{\mu \nu} \in \overline{5}$	$C_{\mu \nu i}$ (4)	$C_{\mu \nu i j k l}$ (1)
Three-forms	$\mathcal{C}_{\mu \nu \rho} \in 5$	$C_{\mu \nu \rho}$ (1)	$C_{\mu \nu \rho i j k}$ (4)
Four-forms	$\mathcal{D}_{\mu \nu \rho \sigma} \in \overline{\mathbf{1 0}}^{\text {¢ }}$	$C_{\mu \nu \rho \sigma i j}$ (6)	$\tilde{A}_{\mu \nu \rho \sigma i}$ (4)

d		$E_{d(d)}$
2		$\mathrm{SL}(2) \times \mathbb{R}^{+}$
3	--0	$\mathrm{SL}(3) \times \mathrm{SL}(2)$
4	O-O-0	SL(5)
5	O-O-0-0	$\mathrm{SO}(5,5)$
6	O-0-0-0-0	$E_{6(6)}$
7	O-0-0-0-0-0	$E_{7(7)}$
8	O-0-0-0-0-0-0	$E_{8(8)}$

Manifest U-duality: Symmetries

generalized metric: $\mathcal{M}_{M N}=E^{A}{ }_{M} E^{B}{ }_{N} \mathcal{M}_{A B}, \quad E^{A}{ }_{M} \in \mathrm{SL}(5)$

Manifest U-duality: Symmetries

generalized metric: $\mathcal{M}_{M N}=E^{A}{ }_{M} E^{B}{ }_{N} \mathcal{M}_{A B}, \quad E^{A}{ }_{M} \in \operatorname{SL}(5)$
generalized frame with $\quad \delta E^{A}{ }_{M}=\mathbb{L}_{\xi} E^{A}{ }_{M}+\Lambda^{A}{ }_{B} E^{B}{ }_{M}, \Lambda^{A}{ }_{B} \in \operatorname{SO}(5)$

Manifest U-duality: Symmetries

generalized metric: $\mathcal{M}_{M N}=E^{A}{ }_{M} E^{B}{ }_{N} \mathcal{M}_{A B}, \quad E^{A}{ }_{M} \in \operatorname{SL}(5)$
generalized frame with $\quad \delta E^{A}{ }_{M}=\mathbb{L}_{\xi} E^{A}{ }_{M}+\Lambda^{A}{ }_{B} E^{B}{ }_{M}, \Lambda^{A}{ }_{B} \in \mathrm{SO}(5)$
$\underline{\text { generalized Lie derivative }}$

1) diffeomorphisms (gravity)
2) gauge tranformation
generalized Lorentz transformation
transformation of fermions

Manifest U-duality: Symmetries

generalized metric: $\mathcal{M}_{M N}=E^{A}{ }_{M} E^{B}{ }_{N} \mathcal{M}_{A B}, \quad E^{A}{ }_{M} \in \operatorname{SL}(5)$
generalized frame with $\quad \delta E^{A}{ }_{M}=\mathbb{L}_{\xi} E^{A}{ }_{M}+\Lambda^{A}{ }_{B} E^{B}{ }_{M}, \Lambda^{A}{ }_{B} \in \mathrm{SO}(5)$
generalized Lie derivative
generalized Lorentz transformation

1) diffeomorphisms (gravity)
2) gauge tranformation
transformation of fermions

$$
\mathcal{M}_{M N} \in \frac{\mathrm{SL}(5)}{\mathrm{SO}(5)}
$$

Manifest U-duality: geometry

We have a Lie derivative... What about parallel transport?

Manifest U-duality: geometry

We have a Lie derivative... What about parallel transport?

Covariant derivative:

$$
\nabla_{A} E_{B}^{M}=E_{A}^{N} \partial_{N} E_{B}{ }^{M}+\Omega_{A B}{ }^{C} E_{C}{ }^{M}-E_{A}{ }^{N} \Gamma_{N L}{ }^{M} E_{B}{ }^{L}
$$

*) $E_{A}{ }^{M} E^{B}{ }_{M}=\delta_{A}{ }^{B}$

Manifest U-duality: geometry

We have a Lie derivative... What about parallel transport?

Covariant derivative:

$$
\nabla_{A} E_{B}^{M}=E_{A}^{N} \partial_{N} E_{B}^{M}+\Omega_{A B}^{C} E_{C}^{M}-E_{A}^{N} \Gamma_{N L}{ }^{M} E_{B}^{L}
$$

Curvature and torsion???:

$$
\left[\nabla_{A}, \nabla_{B}\right] V^{C}=R_{A B D}{ }^{C} V^{D}+T_{A B}{ }^{D} \nabla_{D} V^{C}
$$

A partial fix

- torsion can be quite easily defined:

$$
T_{A B}^{C} E_{C}:=\mathbb{L}_{E_{A}}^{\nabla} E_{B}-\mathbb{L}_{E_{A}} E_{B}
$$

$$
\left.{ }^{*}\right) \mathrm{L}_{U} V^{M}=U^{N} \partial_{N} V^{M}-\alpha P_{(\operatorname{adj})}{ }^{M}{ }_{N,}{ }^{P}{ }_{Q} \partial_{P} U^{Q} V^{N}+\beta \partial_{N} U^{N} V^{M}
$$

A partial fix

- torsion can be quite easily defined:

$$
T_{A B}^{C} E_{C}:=\mathbb{L}_{E_{A}}^{\nabla} E_{B}-\mathbb{L}_{E_{A}} E_{B}
$$

- only few covariant projections known, not the full Riemann tensor, i.e.

$$
S_{\text {eff }}=\cdots+\int \mathrm{d}^{n} x \mathrm{~d}^{d} y \sqrt{g} R \quad \swarrow \begin{aligned}
& \text { gen. } \\
& \text { curvature } \\
& \text { scalar }
\end{aligned}
$$

$\mathrm{E}_{11(11)} \begin{gathered}\text { gen. Einstein-Hilbert } \\ \text { action }\end{gathered}$
$\left.{ }^{*}\right) \mathrm{L}_{U} V^{M}=U^{N} \partial_{N} V^{M}-\alpha P_{(\mathrm{adj})}{ }^{M}{ }_{N,}{ }^{P}{ }_{Q} \partial_{P} U^{Q} V^{N}+\beta \partial_{N} U^{N} V^{M}$

A partial fix

- torsion can be quite easily defined:

$$
T_{A B}^{C} E_{C}:=\mathbb{L}_{E_{A}}^{\nabla} E_{B}-\mathbb{L}_{E_{A}} E_{B}
$$

- only few covariant projections known, not the full Riemann tensor, i.e.

Exceptional Generalized Geometry

* 2007
or
Exceptional Field
Theory
* 2012
$\left.{ }^{*}\right) \mathrm{L}_{U} V^{M}=U^{N} \partial_{N} V^{M}-\alpha P_{(\mathrm{adj})}{ }^{M}{ }_{N},{ }^{P}{ }_{Q} \partial_{P} U^{Q} V^{N}+\beta \partial_{N} U^{N} V^{M}$

A partial fix

- torsion can be quite easily defined:

$$
T_{A B}^{C} E_{C}:=\mathbb{L}_{E_{A}}^{\nabla} E_{B}-\mathbb{L}_{E_{A}} E_{B}
$$

- only few covariant projections known, not the full Riemann tensor, i.e.

Exceptional

Generalized
Geometry

* 2007

$$
S_{\mathrm{eff}}=\cdots+\int \mathrm{d}^{n} x \mathrm{~d}^{d} y \sqrt{g} R \quad \curvearrowright \begin{aligned}
& \text { gen. } \\
& \text { curvature } \\
& \text { scalar }
\end{aligned}
$$

$\mathrm{E}_{11(11)} \begin{gathered}\text { gen. Einstein-Hilbert } \\ \text { action }\end{gathered}$
$\left.{ }^{*}\right) \mathrm{L}_{U} V^{M}=U^{N} \partial_{N} V^{M}-\alpha P_{(\mathrm{adj})}{ }^{M}{ }_{N},{ }^{P}{ }_{Q} \partial_{P} U^{Q} V^{N}+\beta \partial_{N} U^{N} V^{M}$

A hierarchy of curvatures

A better solution

The problem: find covariant curvature under gen. Lorentz tr.
gen. diffeomorphisms
gen. structure group F tr.

A better solution

The problem: find covariant curvature under gen. Lorentz tr.

gen. diffeomorphisms

gen. structure group F tr.

Observation: tensor hierarchy combines

In three words: symmetries for symmetries

diffeomorphisms (external)

8
gen. diffeomorphisms (internal)

A better solution

The problem: find covariant curvature under gen. Lorentz tr.

gen. diffeomorphisms

gen. structure group F tr.

Observation: tensor hierarchy combines

In three words: symmetries for symmetries

diffeomorphisms (external)

gen. diffeomorphisms (internal)

Ne-purpose the tensor hierarchy to construct covariant curvature tensorS

Tensor hierarchy 101

- different approaches, best for our purpose is level decomposition

$$
\mathrm{E}_{p(p)} \rightarrow \underset{\substack{\text { gen. diffs }}}{\mathrm{E}_{d(d)} \times \mathrm{GL}(m), \quad p=d+m} \text { contains gen. structure group } F \subset \mathrm{GL}(m), m=\operatorname{dim}(F)
$$

Tensor hierarchy 101

- different approaches, best for our purpose is level decomposition

bexa1 1 teat.1 The next level
$\left[\widetilde{R}_{A}^{\alpha}, R_{\beta}^{B}\right]=\delta_{A}^{B}\left(\beta \delta_{\alpha}^{\beta} L-K_{\beta}^{\alpha}\right)+\alpha \delta_{\beta}^{\alpha}\left(t^{\mathbf{a}}{ }_{A}^{B} K_{\mathbf{a}}\right.$
R_{1} representation of the duality group

$$
\left[\widetilde{R}_{A}^{\alpha}, R_{\beta}^{B}\right]=\delta_{A}^{B}\left(\beta \delta_{\alpha}^{\beta} L-K_{\beta}^{\alpha}\right)+\alpha \delta_{\beta}^{\alpha}\left(t^{\mathbf{a}}\right)_{A}^{B} K_{\mathbf{a}}
$$

R_{1} representation of the duality group

$$
\left[R_{\alpha}^{A}, R_{\beta}^{B}\right]=\eta^{A B \bar{C}} R_{\alpha \beta \bar{C}} \leftarrow R_{2} \text { representation }
$$

${ }^{\text {neex 1 }} \quad$ leap. 1 The next level

$$
\left[\widetilde{R}_{A}^{\alpha}, R_{\beta}^{B}\right]=\delta_{A}^{B}\left(\beta \delta_{\alpha}^{\beta} L-K_{\beta}^{\alpha}\right)+\alpha \delta_{\beta}^{\alpha}\left(t_{\mu}^{\mathbf{a}}\right)_{A}^{B} K_{\mathbf{a}}
$$

R_{1} representation of the duality group

$$
\left[R_{\alpha}^{A}, R_{\beta}^{B}\right]=\eta^{A B \bar{C}} R_{\alpha \beta \bar{C}} \leftarrow R_{2} \text { representation }
$$

	$\mathrm{O}(d, d)$	$\mathrm{SL}(5)$	$\operatorname{Spin}(5,5)$	$\mathrm{E}_{6(6)}$	$\mathrm{E}_{7(7)}$
α	2	3	4	6	12
β	0	$1 / 5$	$1 / 4$	$1 / 3$	$1 / 2$
R_{1}	$\mathbf{2 d}$	$\overline{\mathbf{1 0}}$	$\mathbf{1 6}_{\mathrm{c}}$	$\mathbf{2 7}$	$\mathbf{5 6}$
R_{2}	$\mathbf{1}$	5	$\mathbf{1 0}$	$\overline{\mathbf{2 7}}$	$\mathbf{1 3 3}$
R_{3}	-	5	$\mathbf{1 6}_{\mathrm{s}}$	$\mathbf{7 8}$	$\mathbf{9 1 2}$

All levels beyond $-1,0,1$ are completely fixed by the Jacobi identity.

$E_{p(p)}$ generalized Lie derivative

- acts on the R_{1} representation and its dual $\overline{R_{1}}$
on the megaspace
- built from the highest/lowest weight state

$E_{p(p)}$ generalized Lie derivative

- acts on the R_{1} representation and its dual $\overline{R_{1}}$

on the megaspace

- built from the highest/lowest weight state

${ }^{*}$) index-free version of $\mathrm{L}_{U} V^{M}=U^{N} \partial_{N} V^{M}-\alpha P_{(\mathrm{adj})}{ }^{M}{ }_{N}{ }^{P}{ }_{Q} \partial_{P} U^{Q} V^{N}+\beta \partial_{N} U^{N} V^{M}$

Megaspace torsion

gen. Lorentz tr.
covarint under gen. diff

gen. structure group F tr.
gen. torsion (twisted) for frame $\quad \widehat{E}=\widetilde{M} N \widetilde{V}$

$$
\left.X_{\mathcal{A}}=\left.\left\langle_{\mathcal{A}}\right| N\right|^{\mathcal{B}} \Theta_{\mathcal{B}}+\left.\left\langle_{\mathcal{A}}\right| \Theta_{\mathcal{B}} Z N\right|^{\mathcal{B}}\right\rangle
$$

Megaspace torsion

gen. Lorentz tr.
\& gen. diffeomorphisms
covarint under gen. diff

gen. structure group F tr.
gen. torsion (twisted) for frame $\quad \widehat{E}=\widetilde{M} N \widetilde{V}$

$$
\left.X_{\mathcal{A}}=\left.\left\langle{ }_{\mathcal{A}}\right| N\right|^{\mathcal{B}} \Theta_{\mathcal{B}}+\left.\left\langle_{\mathcal{A}}\right| \Theta_{\mathcal{B}} Z N\right|^{\mathcal{B}}\right\rangle
$$

$\mathrm{x}_{\mathcal{A}}=\left(\begin{array}{ll}X_{\alpha} & X_{A}\end{array}\right) \quad=\widetilde{M}^{-1} D_{\mathcal{A}} \widehat{E} \widehat{E}^{-1} \widetilde{M}$

Megaspace torsion

 gen. Lorentz tr.covarint under gen. diff

gen. structure group F tr.
gen. torsion (twisted) for frame $\quad \widehat{E}=\widetilde{M} N \widetilde{V}$

$$
\left.X_{\mathcal{A}}=\left.\left\langle_{\mathcal{A}}\right| N\right|^{\mathcal{B}} \Theta_{\mathcal{B}}+\left.\left\langle_{\mathcal{A}}\right| \Theta_{\mathcal{B}} Z N\right|^{\mathcal{B}}\right\rangle
$$

$$
\begin{gathered}
\mathrm{x}_{\mathcal{A}}=\left(\begin{array}{ll}
X_{\alpha} & X_{A}
\end{array}\right) \quad=\widetilde{M}^{-1} D_{\mathcal{A}} \widehat{E} \widehat{E}^{-1} \widetilde{M} \\
\left.\widetilde{V}|\partial\rangle=\left.\right|^{\mathcal{A}}\right\rangle D_{\mathcal{A}}
\end{gathered}
$$

Megaspace torsion

covarint under gen. diff

\cup
gen. structure group F tr.
gen. torsion (twisted) for frame $\quad \widehat{E}=\widetilde{M} N \widetilde{V}$

$$
\begin{gathered}
\left.X_{\mathcal{A}}=\left.\left\langle{ }_{\mathcal{A}}\right| N\right|^{\mathcal{B}} \Theta_{\mathcal{B}}+\left.\left\langle_{\mathcal{A}}\right| \Theta_{\mathcal{B}} Z N\right|^{\mathcal{B}}\right\rangle \\
\mathrm{x}_{\mathcal{A}}=\left(\begin{array}{ll}
X_{\alpha} & X_{A}
\end{array}\right)=\widetilde{M}^{-1} D_{\mathcal{A}} \widehat{E} \widehat{E}^{-1} \widetilde{M} \\
\widetilde{V}|\partial\rangle=|\mathcal{A}\rangle D_{\mathcal{A}}
\end{gathered}
$$

torsion
\&

curvatures

on the phyiscal space

Exceptional Poláček-Siegel form
 ...or how to fix the frame I

Exceptional Poláček-Siegel form

 ...or how to fix the frame I$$
\begin{aligned}
& \widehat{E}=\widetilde{M} N \widetilde{V} \\
& \quad \swarrow \\
& \widetilde{M}^{-1} D_{\alpha} \widetilde{M}=t_{\alpha}
\end{aligned}
$$

$$
\text { generators of the structure group } F \subset \mathrm{GL}(m)
$$

Exceptional Poláček-Siegel form

 ...or how to fix the frame I$$
\begin{aligned}
& \widehat{E}=\widetilde{M} N \widetilde{V} \\
& \widetilde{M}^{-1} D_{\alpha} \widetilde{M}=t_{\alpha} \quad \text { generators of the structure group } F \subset \mathrm{GL}(m) \\
& D_{\alpha} \widetilde{V} \widetilde{V}^{-1}=-\frac{1}{2}\left(X_{\alpha \beta}{ }^{\gamma}+\ldots\right) K_{\beta}^{\gamma} \quad \text { choosen such that } \\
& X_{\alpha}=t_{\alpha} \text { with }\left[t_{\alpha}, t_{\beta}\right]=X_{\alpha \beta}{ }^{\gamma} t_{\gamma}
\end{aligned}
$$

¿ Exceptional Poláček-Siegel form ...or how to fix the frame I

$$
\begin{aligned}
& \widehat{E}=\widetilde{M} N \widetilde{V} \\
& \widetilde{M}^{-1} D_{\alpha} \widetilde{M}=t_{\alpha} \quad \text { generators of the structure group } F \subset \mathrm{GL}(m) \\
& \quad D_{\alpha} \widetilde{V} \widetilde{V}^{-1}=-\frac{1}{2}\left(X_{\alpha \beta}{ }^{\gamma}+\ldots\right) K_{\beta}^{\gamma} \quad \text { choosen such that } \\
& X_{\alpha}=t_{\alpha} \text { with }\left[t_{\alpha}, t_{\beta}\right]=X_{\alpha \beta}{ }^{\gamma} t_{\gamma}
\end{aligned}
$$

Exceptional Poláček-Siegel form

 ...or how to fix the frame I$$
\begin{aligned}
& \widehat{E}=\widetilde{M} N \widetilde{V} \\
& N=\exp \left(\Omega_{A}^{\alpha} R_{\alpha}^{A}+\frac{1}{2} \rho^{\alpha \beta \bar{C}} R_{\alpha \beta \bar{C}+\ldots}\right)
\end{aligned}
$$

Exceptional Poláček-Siegel form

 ...or how to fix the frame I

Exceptional Poláček-Siegel form

 ...or how to fix the frame I

results in

$$
X_{A}=X_{A}^{\mathbf{b}} K_{\mathbf{b}}+X_{A B}^{\beta} R_{\beta}^{B}+\frac{1}{2} X_{A}^{\beta_{1} \beta_{2} \bar{B}} R_{\beta_{1} \beta_{2} \bar{B}}+\ldots
$$

Possible Link?

Cartan geometry...

Symplectic reduction...

...unifies Torsion and curvature in a similar way.
...on the phase space of gauge theories has similar feature.

Applications

Dualities revisited

- Historical development of T-dualites

abelian
non-abelian
Poisson-Lie
WZW-Poisson

Dualities revisited

- Historical development of T-dualites

Dualities revisited

- Historical development of T-dualites

generalized T-dualities
Applications:
- solution generating techniques
- consistent truncations
- integrable strings

Underlying structure

Homogenious space:
A space that looks everywhere the same as you move through it.

$$
\text { isometry } \longleftrightarrow G / \boldsymbol{F} \longleftrightarrow \text { isotropy }
$$

Underlying structure

Homogenious space: A space that looks everywhere the same as you move through it.

$$
\text { isometry } \Longleftrightarrow G / F \longleftrightarrow \text { isotropy }
$$

but in Generalized Geometry
with generalized Lie derivative: $\mathrm{L}_{U} V^{M}$
and section condition for closure

Generalized group manifold

$\mathbb{L}_{E_{A}} E_{B}{ }^{M}=F_{A B}{ }^{C} E_{C}{ }^{M}$
gen. frame
structure constants

Generalized group manifold

$$
\mathbb{L}_{E_{A}} E_{B}^{M}=F_{A B}^{C} E_{C}{ }^{M}<\text { structure constants } \text { gen. frame }
$$

$O(D, D)$ recipe to contruct gen. frame:

1) Lie algebra with generators T_{A}

$$
\left[T_{A}, T_{B}\right]=F_{A B}^{C} T_{C}
$$

2) with ad-invariant, $O(D, D)$-pairing

$$
\left\langle T_{A}, T_{B}\right\rangle=\eta_{A B}
$$

3) maximally isotropic subgroup

Generalized group manifold

$$
\mathbb{L}_{E_{A}} E_{B}{ }^{M}=F_{A B}^{C} E_{C}{ }^{M} \Longleftarrow \text { gen. frame }
$$

$O(D, D)$ recipe to contruct gen. frame:

Homogeneous space

Theorem: Let (M, g) be a connected and simply-connected complete Riemannian [Ambrose, Singer 1958] manifold. Then, the following statements are equivalent:

1) The manifold M is Riemannian homogenous
2) M admits a linear connection ∇ satisfying

Homogeneous space

Theorem: Let (M, g) be a connected and simply-connected complete Riemannian [Ambrose, Singer 1958] manifold. Then, the following statements are equivalent:

1) The manifold M is Riemannian homogenous
2) M admits a linear connection ∇ satisfying

frame and connection required

$$
\nabla_{i} e_{a}^{j}=\partial_{i} e_{a}^{j}-\omega_{i a}^{b} e_{b}^{j}+\Gamma_{i k}^{j} e_{a}^{k}=0
$$

Generalized coset

$\nabla_{I} E_{A}{ }^{J}=\partial_{I} E_{A}{ }^{J}-\Omega_{I A}{ }^{B} E_{B}{ }^{J}+\Gamma_{I K}{ }^{J} E_{A}{ }^{K}=0$
$\mathrm{O}(\mathrm{D}, \mathrm{D})$ recipe to contruct gen. frame and spin connection:

1) gen. frame on HIG = mega-space
2) another isotropic subgroup F

Generalized coset

$$
\nabla_{I} E_{A}^{J}=\partial_{I} E_{A}^{J}-\Omega_{I A}{ }^{B} E_{B}^{J}+\Gamma_{I K}{ }^{J} E_{A}{ }^{K}=0
$$

$\mathrm{O}(\mathrm{D}, \mathrm{D})$ recipe to contruct gen. frame and spin connection:

Generalized coset

$$
\nabla_{I} E_{A}^{J}=\partial_{I} E_{A}^{J}-\Omega_{I A}^{B} E_{B}^{J}+\Gamma_{I K}{ }^{J} E_{A}^{K}=0
$$

$\mathrm{O}(\mathrm{D}, \mathrm{D})$ recipe to contruct gen. frame and spin connection:

$$
\begin{gathered}
E_{A}^{I} \text { and } \Omega_{I A}^{B} \\
\text { on double coset } \\
H \backslash G / F
\end{gathered}
$$

gen. structure group

- higher derivative connections from tensor hierarchy
- singularities @ fixed points of F action

Summary and outlook

- finally covariant curvatures for execptional gen. geometry / field theory
- ulitmate goal is to use geometry, like in GR, to fix (as much as possible)

1) target space low-energy effective action
2) string and even membrane worldsheet theory

Summary and outlook

- finally covariant curvatures for execptional gen. geometry / field theory
- ulitmate goal is to use geometry, like in GR, to fix (as much as possible)

1) target space low-energy effective action
2) string and even membrane worldsheet theory

- application:
- reveal new dualities, which give new SUGRA solution and integrable models
- Understand the structure of space-time as probed by strings and membranes
- simplify computation of: β-functions, S-matrix, anomalies,

Summary and outlook

- finally covariant curvatures for execptional gen. geometry / field theory
- ulitmate goal is to use geometry, like in GR, to fix (as much as possible)

1) target space low-energy effective action
2) string and even membrane worldsheet theory

- application:
- reveal new dualities, which give new SUGRA solution and integrable models
- Understand the structure of space-time as probed by strings and membranes
- simplify computation of: β-functions, S-matrix, anomalies,
- new questions:
- Can we capture higher-derivative corrections with similar techniques?
- (How) do branes resolve singularities of generalized cosets?

Summary and outlook

- finally covariant curvatures for execptional gen. geometry / field theory
- ulitmate goal is to use geometry, like in GR, to fix (as much as possible)

1) target space low-energy effective action
2) string and even membrane worldsheet theory

- application:
- reveal new dualities, which give new SUGRA solution and integrable models
- Understand the structure of space-time as probed by strings and membranes
- simplify computation of: β-functions, S-matrix, anomalies,
- new questions:
- Can we capture higher-derivative corrections with similar techniques?
- (How) do branes resolve singularities of generalized cosets?

