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The present constitutes a short summary of what was discussed in the class during the final tutorial of
the Classical Field Theory course.

The Lorentz group in 2+1 dimensions

The main subject of discussion was the Lorentz group in d = 3 dimensions. Just as in the 2d case, we are
searching for transformation matrices that satisfy the equations

ΛT · η · Λ = η, (1)

detΛ = ±1, (2)

where
ηµν = diag(1,−1,−1).

We can do so by brute force; that is plugging the most general form a 3× 3 matrix may assume:

Λ =

a b c
d e f
g h k

 ,

in (1) and solve the system of equations to determine the parameters. Doing so, the resulting system reads

a2 − d2 − g2 = 1
b2 − e2 − h2 = −1
c2 − f2 − k2 = −1
ab− de− gh = 0
ac− df − gk = 0
bc− ef − hk = 0
aek + bfg + cdh− ceg − bdk − afh = ±1

(3)

This system is of course very difficult to solve. Therefore, we will do a small trick by not actually solving
it.

First of all, we have to think what information does the 3d Lorentz group provide us with. In general,
the Lorentz group gives rise to boosts and rotations and in d = 3 = 2 + 1 particularly we have time and 2
spatial dimensions, namely x and y; therefore we have 2 boosts and 1 rotation.

Secondly, the symmetry group of the 3d Lorentz group is SO(2, 1) whose generators are

T1 =

 0 −1 0
−1 0 0
0 0 0

 ,

T2 =

 0 0 −1
0 0 0
−1 0 0

 ,

T3 =

0 0 0
0 0 −1
0 1 1


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This means that each of the Ti’s gives rise to either a boost or a rotation; problem is to understand which
is which. The relative minus sign however in T3 gives us a hint that it corresponds to a rotation and we can
make the following identification:

• T1 is the generator of boosts in x−axis, which are parametrized as

Λ(tx) =

 coshϕ − sinhϕ 0
− sinhϕ coshϕ 0

0 0 1

 ; (4)

• T2 is the generator of boosts in y−axis which, are parametrized as

Λ(ty) =

 coshϕ 0 − sinhϕ
0 1 0

− sinhϕ 0 coshϕ

 ; (5)

• T3 is the generator of rotations in the xy plane, which are parametrized as

Λ(xy) =

 1 0 0
cosϕ − sinϕ 0
sinϕ cosϕ 0

 , (6)

where we have used

Ti =
∂Λi

∂ϕ

∣∣∣∣
ϕ=0

to carry out this computation. Notice also that we parametrize boosts using hyperbolic trigonometric
functions and rotations using regular trigonometric functions. Interested readers are invited to check
for themselves that these three matrices satisfy the system of (3)

However, one can easily notice that (4) - (6) have Λ0
0 > 0 and detΛ = 1, which means that they all cor-

respond to proper-orthochronous transformation. So, how can one obtain improper and non-orthochronous
transformations? In principle, one has to split each boost and each rotation into these components while
always satisfying (3). Hence, the respective components of connectivity are the following:

i) For x−boost:

Λ(tx)↑
+ =

 coshϕ − sinhϕ 0
− sinhϕ coshϕ 0

0 0 1

 Λ(tx)↓
+ =

− coshϕ sinhϕ 0
sinhϕ coshϕ 0

0 0 −1


Λ(tx)↑

− =

 coshϕ sinhϕ 0
− sinhϕ − coshϕ 0

0 0 1

 Λ(tx)↓
− =

− coshϕ sinhϕ 0
sinhϕ coshϕ 0

0 0 −1


ii) For y−boost:

Λ(ty)↑
+ =

 coshϕ 0 − sinhϕ
0 1 0

− sinhϕ 0 coshϕ

 Λ(ty)↓
+ =

− coshϕ 0 sinhϕ
0 −1 0

− sinhϕ 0 coshϕ


Λ(ty)↑

− =

 coshϕ 0 sinhϕ
0 1 0

− sinhϕ 0 − coshϕ

 Λ(ty)↓
− =

− coshϕ 0 sinhϕ
0 −1 0

sinhϕ 0 − coshϕ


iii) For rotation:

Λ(xy)↑
+ =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 Λ(xy)↓
+ =

−1 0 0
0 cosϕ sinϕ
0 sinϕ − cosϕ


Λ(xy)↑

− =

1 0 0
0 cosϕ − sinϕ
0 − sinϕ − cosϕ

 Λ(xy)↓
− =

−1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


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In the depiction above. upper rows correspond to proper transformations (detΛ = 1; preserve orientation)
while lower rows to improper ones (detΛ = −1; don’t preserve orientation) and left columns correspond to
orthochronous transformations (Λ0

0 > 0; preserve causality) while right columns to non-orthochronous ones
(Λ0

0 < 0; don’t preserve causality). Having these matrices, we can do any kind of calculation we want.
One last thing left to do, is the geometrical interpretation of vectors of the same length. We know already

that a Lorentz transformation leaves the length of a vector invariant:

v′µv′µ = Λµ
ρv

ρΛµ
σvσ = δσρ v

ρvσ = vρvρ.

This means that the square length of a vector remains constantly the same and for a 3−component vector
we can write

vµvµ = v2 = v20 − v21 − v22 = l. (7)

What remains now is to classify between the different values l may assume. We deduce that

• For l > 0, we get a hyperboloid of 2 sheets (this is where timelike vectors reside);

• For l < 0, we get a hyperboloid of 1 sheet (this is where spacelike vectors reside);

• For l = 0, we get a cone (this is where lightlike vectors reside);

These 3 separate cases are apparent in Fig.1. Notice that causality is preserved in the timelike case (a
connection between the past and future cone is forbidden). As a better comparison with the 2D case, the
projection in the v0 − v1 plane is depicted in Fig.2a), along with the complete Minkowski space in Fig.2b).
Notice, as a final remark, that spacelike connections lie outside the light-cone.

Figure 1: Geometrical interpretation of all possible sets of vectors in 3D Minskowski space.
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Figure 2: a) Comparison of v0 − v1 plane in 2D and 3D case b) Compact representation of 3D Minskowski
space.
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