Classical Field Theory, Winter 2023/24
Lecture: Prof. Andrzej Frydryszak, andrzej.frydryszak@uwr.edu.pl
Tutorial: Dr. Falk Hassler, falk.hassler@uwr.edu.pl
Assistant: M.Sc. Achilles Gitsis, achilleas.gitsis@uwr.edu.pl

9. Pseudo - Euclidean space

(18 points)
To be discussed on Wednesday, $13^{\text {th }}$ December, 2023 in the tutorial. Please indicate your preferences until Friday, 08/12/2023, 21:00:00 on the website.

Exercise 9.1: 2D Lorentz group

Consider a two-dimensional pseudo-Euclidian space.
a) (4 points) Find a matrix realization of the group of invariance of the metric i.e. prove that the Lorentz group in two dimensions can be written as:

$\mathcal{L}_{+}^{\uparrow}=\left(\begin{array}{cc}\cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi\end{array}\right)$	$\mathcal{L}_{+}^{\downarrow}=\left(\begin{array}{ll}-\cosh \phi & -\sinh \phi \\ -\sinh \phi & -\cosh \phi\end{array}\right)$
$\mathcal{L}_{-}^{\uparrow}=\left(\begin{array}{ll}\cosh \phi & -\sinh \phi \\ \sinh \phi & -\cosh \phi\end{array}\right)$	$\mathcal{L}_{-}^{\downarrow}=\left(\begin{array}{ll}-\cosh \phi & \sinh \phi \\ -\sinh \phi & \cosh \phi\end{array}\right)$

b) (3 points) Describe components of connectivity of this group.
c) (4 points) Which of these components are subgroups?

Hint: It is sufficient to show that the product of two elements of the same component is still of the same component. Use also the properties:

$$
\begin{aligned}
\sinh (x+y) & =\sinh x \cosh y+\cosh x \sinh y, \\
\cosh (x+y) & =\cosh x \cosh y+\sinh x \sinh y, \\
\sinh (x-y) & =\sinh x \cosh y-\cosh x \sinh y, \\
\cosh (x-y) & =\cosh x \cosh y-\sinh x \sinh y .
\end{aligned}
$$

d) (4 points) Find all subgroups of the $d=2$ Lorentz group.

Hint: Some compositions (unions) of the components might also be subgroups.
e) (3 points) Describe geometrically sets of (Lorentz transformed) vectors of the same length. Hint: Picturing them in a $x-t$ plane might be helpful.

