Classical Field Theory, Winter 2023/24
Lecture: Prof. Andrzej Frydryszak, andrzej.frydryszak@uwr.edu.pl
Tutorial: Dr. Falk Hassler, falk.hassler@uwr.edu.pl
Assistant: M.Sc. Achilles Gitsis, achilleas.gitsis@uwr.edu.pl

8. Reference frames \& relativistic motion

To be discussed on Wednesday, $6^{\text {th }}$ December, 2023 in the tutorial.
Please indicate your preferences until Friday, 01/12/2023, 21:00:00 on the website.

Exercise 8.1: Reference frames

A relativistic inertial reference frame \mathcal{O}^{\prime} moves with respect to another relativistic inertial reference frame \mathcal{O} along the common x-axis with the velocity \vec{u}. A massive relativistic particle has velocity \vec{v} and acceleration \vec{a} with respect to the system \mathcal{O}.
Hint: Use the result of Ex. 7.2a. You can also set $c=1$ for convenience.
a) (2 points) Prove that the transformed four-acceleration in \mathcal{O}^{\prime} is given by

$$
w^{\prime \mu}=\left(\gamma_{u} w^{0}-\beta_{u} \gamma_{u} w_{x},-\beta_{u} \gamma_{u} w^{0}+\gamma_{u} w_{x}, w_{y}, w_{z}\right), \quad w^{0}=\gamma_{v}^{4} \frac{\vec{v} \cdot \vec{a}}{c}
$$

where

$$
\gamma_{u}=\frac{1}{\sqrt{1-\beta_{u}^{2}}}, \quad \beta_{u}=\frac{u}{c}
$$

b) (4 points) Compute the x-component of the acceleration in \mathcal{O}, that is calculate a_{x}^{\prime}.

Hint: Notice that the velocity v_{x}^{\prime} that is perceived by an observer in \mathcal{O}^{\prime} is given by the velocity composition formula in Ex. 7.1a. You can also use the Lorentz transformation of the four-velocity to simplify your result.
c) (4 points) Compute the y-component of the acceleration in \mathcal{O}, that is calculate a_{y}^{\prime}. Hint: Use that

$$
v_{y}^{\prime}=\frac{1}{\gamma_{u}\left(1-\frac{u v_{x}}{c^{2}}\right)} v_{y} .
$$

Exercise 8.2: Relativistic motion

A relativistic particle moves in uniform circular motion

$$
\begin{equation*}
x^{\mu}=(t, r \cos \omega t, r \sin \omega t, 0), \quad c=1 \tag{1}
\end{equation*}
$$

a) (3 points) Show that the transformed four-position according to an observer moving along y-axis with velocity \vec{v} is

$$
\left\{\begin{array}{l}
t^{\prime}=\frac{1}{\sqrt{1-u^{2}}} \frac{1}{\sqrt{1-v^{2}}} \tau-\frac{v r}{\sqrt{1-v^{2}}} \sin \frac{u \tau}{r \sqrt{1-u^{2}}} \\
x^{\prime}=r \cos \frac{u \tau}{r \sqrt{1-u^{2}}} \\
y^{\prime}=-v \frac{1}{\sqrt{1-u^{2}}} \sqrt{\sqrt{1-v^{2}}} \tau+\frac{r}{\sqrt{1-v^{2}}} \sin \frac{u \tau}{r \sqrt{1-u^{2}}} \\
z^{\prime}=0
\end{array}\right.
$$

where τ is the proper time and $u=\omega r$ is the tangential velocity.
b) (2 points) If this particle decays at rest with half-life time τ_{0}, what is the observed half-life time?
c) (4 points) Show that the magnitude of the proper acceleration 3 -vector is given by

$$
|\vec{\alpha}|=\frac{r \omega^{2}}{1-r^{2} \omega^{2}} .
$$

Hint: In a rest frame with a zero time component, the (square) magnitude of the proper acceleration 3-vector is the same as the (square) magnitude of the four-acceleration 3-vector. Use also the result of Ex. $7.2 a$ and the properties of centripedal acceleration in uniform circular motion.

Exercise 8.3: Relativistic quantum mechanics

a) (4 points) Using arguments of relativistic mechanics, show that a free isolated electron cannot absorb or emit a photon.
Hint: Try to (dis)prove that by calculating the mass of the electron in terms of the photon's energy in the electron's rest frame. You can also set $c=\hbar=1$ for convenience.

