Classical Field Theory, Winter 2025/26

Lecture: Dr. Falk Hassler, falk.hassler@uwr.edu.pl

Tutorial: Dr. Falk Hassler, falk.hassler@uwr.edu.pl, and M.Sc. Achilles Gitsis, achilleas.gitsis@uwr.edu.pl

4. Minkowski space and the light cone (16 points)

To be discussed on Wednesday, $5^{\rm th}$ November, 2025 in the tutorial. Please indicate your preferences until Friday, 31/10/2025, 21:00:00 on the website.

Exercise 4.1: Light cone

Let $(M, \langle \cdot, \cdot \rangle)$ be the Minkowski space; show that:

a) (4 points) For v and w lying in the same cone (either the future or the past one), i.e. $v, w \in \mathcal{J}^+$ (or $v, w \in \mathcal{J}^-$) such that $\langle v, v \rangle > 0$ and $\langle w, w \rangle \geq 0$ we have that

$$\langle v + w, v + w \rangle > 0.$$

Hint: Use the fact that both vectors lie on the same cone in combination with the Schwarz inequality

$$|\vec{v}||\vec{w}| \ge |\vec{v} \cdot \vec{w}|.$$

b) (3 points) Two lightlike vectors are orthogonal iff they are proportional.

Hint: The Schwarz inequality in the equality limit should be used at some point in the derivation.

Exercise 4.2: Subspaces of Minkowski space

Let $W \subset M$ be a subspace in M (the Minkowski space). Show the following statements:

Hint: For two non-degenerate subspaces of the Minkowski space $W=(W^{\perp})^{\perp}$ and W^{\perp} , the former can be written as

$$M=W\oplus W^\perp$$

and it follows that

$$indM = indW + indW^{\perp}, \tag{4}$$

where indV is the number of positive signs in the signature of the metric defined in V.

a) (3 points) W is timelike iff W^{\perp} is spacelike.

Hint: Keep in mind that for timelike W, it is indW = 1.

b) (3 points) W is spacelike iff W^\perp is timelike.

Hint: Keep in mind that for spacelike W, it is indW = 0.

c) (3 points) W is lightlike iff W^{\perp} is lightlike.

Hint: Note that W is degenerate if it is lightlike.