Classical Field Theory, Winter 2023/24

Lecture: Prof. Andrzej Frydryszak, andrzej.frydryszak@uwr.edu.pl Tutorial: Dr. Falk Hassler, falk.hassler@uwr.edu.pl Assistant: M.Sc. Achilles Gitsis, achilleas.gitsis@uwr.edu.pl

5. Minkowski space and the light cone (16 points)

To be discussed on Wednesday, 8^{th} November, 2023 in the tutorial. Please indicate your preferences until Friday, 03/11/2023, 21:00:00 on the website.

Exercise 5.1: Light cone

Let $(M, \langle \cdot, \cdot \rangle)$ be the Minkowski space; show that:

a) (4 points) For v and w lying in the same cone (either the future or the past one), i.e. $v, w \in \mathcal{J}^+$ (or $v, w \in \mathcal{J}^-$) such that $\langle v, v \rangle > 0$ and $\langle w, w \rangle \ge 0$ we have that

 $\langle v+w, v+w \rangle > 0.$

Hint: Use the fact that both vectors lie on the same cone in combination with the Schwarz inequality

$$|\vec{v}||\vec{w}| \ge |\vec{v} \cdot \vec{w}|$$

b) (3 points) Two lightlike vectors are orthogonal iff they are proportional.
Hint: The Schwarz inequality in the equality limit should be used at some point in the derivation.

Exercise 5.2: Subspaces of Minkowski space

Let $W \subset M$ be a subspace in M (the Minkowski space). Show the following statements:

Hint: For two non-degenerate subspaces of the Minkowski space $W = (W^{\perp})^{\perp}$ and W^{\perp} , the former can be written as $M = W \oplus W^{\perp}$

$$indM = indW + indW^{\perp},\tag{4}$$

where indV is the number of positive signs in the signature of the metric defined in V.

- a) (3 points) W is timelike iff W^{\perp} is spacelike. Hint: Keep in mind that for timelike W, it is indW = 1.
- b) (3 points) W is spacelike iff W^{\perp} is timelike. Hint: Keep in mind that for spacelike W, it is indW = 0.
- c) (3 points) W is lightlike iff W[⊥] is lightlike. *Hint: Note that W is degenerate if it is lightlike.*