Selected Tools of Modern Theoretical Physics 2B, Summer 2025

Lecturer: Dr. Falk Hassler, falk.hassler@uwr.edu.pl Tutorials: M.Sc. Alex Swash, alex.swash@uwr.edu.pl

5. Representation theory (16 points)

To be discussed on Monday, 26th May, 2025 in the tutorial.

Please indicate your preferences until Wednesday, 21/05/2025, 21:00:00 on the website.

Exercise 5.1: Killing form

During the lecture, we defined an inner product on the Lie algebra \mathfrak{g} called the *Killing form* κ . Let us study some of its properties.

a) (2 points) An automorphism ω of \mathfrak{g} is a bijective map $\omega:\mathfrak{g}\to\mathfrak{g}$ which is compatible with the Lie bracket, i.e. it obeys

$$\omega([x,y]) = [\omega(x), \omega(y)].$$

Show that the Killing form κ is invariant under any automorphism of \mathfrak{g} .

b) (2 points) Prove the ad-invariance of the Killing form, i.e. the property

$$\kappa([x,y],z) = \kappa(x,[y,z]), \quad \forall x,y,z \in \mathfrak{g}.$$

c) (2 points) Let $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R}) = \operatorname{span}(h,e,f)$ with Lie brackets [h,e] = 2e,[h,f] = -2f and [e,f] = h. Compute the Killing form and show that it obeys

$$\kappa(x,y) = 4\operatorname{Tr}(xy), \quad \forall x,y \in \mathfrak{sl}(2,\mathbb{R}).$$

- d) (2 points) Repeat the exercise for $\mathfrak{so}(3)$. Is it semisimple?
- e) (2 points) Repeat this for the three-dimensional Heisenberg algebra which we considered during the lecture. Is it semisimple?

Exercise 5.2: Low-dimensional Lie algebras

- a) (2 points) Consider the two-dimensional Lie algebra with generators T and U and Lie bracket [T, U] = U, and the three-dimensional Heisenberg algebra. Are these Lie algebras solvable? Are they nilpotent?
- b) (2 points) Classify all two-dimensional Lie algebras up to isomorphism.

Exercise 5.3: Adjoint action

a) (2 points) During the lecture, we defined the adjoint actions Ad and ad for Lie groups and Lie algebras respectively. Prove the identities

$$(\mathrm{Ad}_g)^{-1} = \mathrm{Ad}_{g^{-1}}, \quad \mathrm{ad}_{\mathrm{Ad}_g(X)} = \mathrm{Ad}_g \, \mathrm{ad}_X (\mathrm{Ad}_g)^{-1}.$$