Classical Field Theory, Winter 2023/24
Lecture: Prof. Andrzej Frydryszak, andrzej.frydryszak@uwr.edu.pl
Tutorial: Dr. Falk Hassler, falk.hassler@uwr.edu.pl
Assistant: M.Sc. Achilles Gitsis, achilleas.gitsis@uwr.edu.pl

4. Initial value problem and Poisson brackets

To be discussed on Wednesday, $25^{\text {th }}$ October, 2023 in the tutorial.
Please indicate your preferences until Friday, 20/10/2023, 21:00:00 on the website.

Exercise 4.1: Initial value problem

We will now solve the initial value problem for the linear chain using normal coordinates, i.e. give an expression for $q_{n}(t)$ in terms of the initial conditions $q_{n}(0)$ and $\dot{q}_{n}(0)$.
a) (4 points) Express the coefficients b_{k} and \bar{b}_{k} in terms of $q_{n}(t)$ and $\dot{q}_{n}(t)$.

Hint: You can easily do that by projecting these expansions onto the set of the basis functions, that is calculate

$$
\sum_{n} e^{i \omega_{k} t} \vec{u}_{n}^{k} q_{n}(t)
$$

and

$$
\sum_{n} e^{i \omega_{k} t} \bar{u}_{n}^{k} \dot{q}_{n}(t)
$$

b) (4 points) With

$$
b_{k}=\frac{1}{2} \sum_{n} \bar{u}_{n}^{k} e^{i \omega_{k} t}\left(q_{n}(t)+\frac{i}{\omega_{k}} \dot{q}_{n}(t)\right)
$$

and the abbreviation

$$
G_{n n^{\prime}}(t)=\sum_{k} e^{-i \omega_{k} t} u_{n}^{k} \bar{u}_{n^{\prime}}^{k}=\frac{1}{N} \sum_{k} e^{i\left[k a\left(n-n^{\prime}\right)-\omega_{k} t\right]}
$$

prove that the solution of the initial value problem reduces to

$$
q_{n}(t)=\frac{1}{N} \sum_{k} \sum_{n}\left\{q_{n^{\prime}}(0) \cos \left[k a\left(n-n^{\prime}\right)-\omega_{k} t\right]-\frac{1}{\omega_{k}} \dot{q}_{n^{\prime}}(0) \sin \left[k a\left(n-n^{\prime}\right)-\omega_{k} t\right]\right\} .
$$

Exercise 4.2: Poisson brackets

Last but not least, we calculate the Poisson brackets, since we have everything we need. Remember the definition of the Poisson brackets

$$
\{A, B\}:=\sum_{i=1}^{N}\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right),
$$

where $A=A\left(q_{i}, p_{i}, t\right)$ and $B=B\left(q_{i}, p_{i}, t\right)$.
a) (4 points) Calculate $\left\{b_{k}, \bar{b}_{k^{\prime}}\right\}$.
b) (4 points) Calculate $\left\{b_{k}, b_{k^{\prime}}\right\}$ and $\left\{\bar{b}_{k}, \bar{b}_{k^{\prime}}\right\}$ as well.

