Classical Field Theory, Winter 2023/24
Lecture: Prof. Andrzej Frydryszak, andrzej.frydryszak@uwr.edu.pl
Tutorial: Dr. Falk Hassler, falk.hassler@uwr.edu.pl
Assistant: M.Sc. Achilles Gitsis, achilleas.gitsis@uwr.edu.pl

3. Fourier transformation and Hamiltonian

To be discussed on Wednesday, $18^{\text {th }}$ October, 2023 in the tutorial.
Please indicate your preferences until Friday, 13/10/2023, 21:00:00 on the website.

Exercise 3.1: Solving the differential equation

We have defined a linear 1D chain by the Lagrangian

$$
L=\sum_{n=1}^{N}\left[\frac{m}{2} \dot{q}_{n}^{2}-\frac{\kappa}{2}\left(q_{n+1}-q_{n}\right)^{2}\right] .
$$

a) (3 points) Prove that the equation of motion for said Lagrangian is

$$
\begin{equation*}
m \ddot{q}_{n}=\kappa\left(q_{n+1}+q_{n-1}-2 q_{n}\right) \tag{1}
\end{equation*}
$$

In solving the equation of motion, the normal coordinates

$$
u_{n}^{k}=\frac{1}{\sqrt{N}} e^{i k a n}
$$

will prove useful.
b) (4 points) Prove that u_{n}^{k} are orthonormal

$$
\sum_{n} \bar{u}_{n}^{k} u_{n}^{k^{\prime}}=\delta^{k k^{\prime}}
$$

and complete

$$
\sum_{k} \bar{u}_{n}^{k} u_{n^{\prime}}^{k}=\delta_{n n^{\prime}}
$$

Hint: Use

$$
\sum_{n=1}^{N} x^{n}=x \frac{1-x^{N}}{1-x}, \quad \frac{1}{N} \sum_{l=1}^{N} e^{2 \pi i\left(n-n^{\prime}\right) \frac{l}{N}}=\delta_{n n^{\prime}}
$$

and periodic boundary conditions, that is $u_{N+n}^{k}=u_{n}^{k}$.
c) (5 points) Using the discrete Fourier transform we have written the real solution of (1) in the following form:

$$
\begin{equation*}
q_{n}(t)=\frac{1}{\sqrt{N}} \sum_{k}\left[b_{k} e^{-i\left(\omega_{k} t-k a n\right)}+\bar{b}_{k} e^{i\left(\omega_{k} t-k a n\right)}\right], \quad \omega_{k}=2 \sqrt{\frac{\kappa}{m}}\left|\sin \frac{k a}{2}\right| . \tag{2}
\end{equation*}
$$

Derive above solution.
Hint: Make the substitution

$$
q_{n}(t)=\sum_{k} a_{k}(t) u_{n}^{k}
$$

in (1); use also

$$
e^{i x}+e^{-i x}-2=-4 \sin ^{2} \frac{x}{2}
$$

and that q_{n} are real.

Exercise 3.2: The Hamiltonian

We will now derive the Hamiltonian of the linear chain

$$
H=T+V=\frac{1}{2 m} \sum_{n=1}^{N} p_{n}^{2}+\frac{\kappa}{2} \sum_{n=1}^{N}\left(q_{n+1}-q_{n}\right)^{2}, \quad p_{n}=\frac{\partial L}{\partial \dot{q}_{n}}
$$

in terms of the normal coordinates b_{k} and \bar{b}_{k}.
a) (3 points) Compute the kinetic energy T.

Hint: Expressing p_{n} in terms of u_{n}^{k} and making use of orthonormality and completeness will facilitate your computations.
b) (3 points) Compute the potential energy V.

Hint: Again, expressing q_{n} in terms of u_{n}^{k} and making use of orthonormality and completeness will help with your calculations.
c) (2 points) Prove that the Hamiltonian of the linear chain reduces to

$$
H=2 m \sum_{k} \omega_{k}^{2} \bar{b}_{k} b_{k}
$$

