Classical Field Theory, Winter 2023/24
Lecture: Prof. Andrzej Frydryszak, andrzej.frydryszak@uwr.edu.pl
Tutorial: Dr. Falk Hassler, falk.hassler@uwr.edu.pl
Assistant: M.Sc. Achilles Gitsis, achilleas.gitsis@uwr.edu.pl

2. Sine-Gordon equation

(17 points)
To be discussed on Tuesday, $10^{\text {th }}$ October, 2023 in the tutorial.
Please indicate your preferences until Thursday, 05/10/2023, 21:00:00 on the website.

Exercise 2.1:

As our first introduction to Classical Field Theory, we start by studying the Sine-Gordon equation, which the describes the propagation of solitons (nonlinear but strongly stable localised wavepackets) and is also an integrable PDE (Partial Differential Equation).
Consider the Sine-Gordon equation

$$
m R^{2} \frac{\partial^{2}}{\partial t^{2}} \phi(x, t)=-m g R \sin \phi(x, t)+\tilde{\kappa} \frac{\partial^{2}}{\partial x^{2}} \phi(x, t), \quad x \in\left[x_{-M}, x_{N}\right]
$$

with boundary conditions $\phi\left(x_{-M}, t\right)=0=\phi^{\prime}\left(x_{-M}, t\right)$ and $\phi\left(x_{N}, t\right)=2 \pi n$, where M, N are fixed integers and n is an arbitrary integer.
a) (1 point) Using the following substitutions

$$
\tau=\sqrt{\frac{g}{R}} t, \quad \xi=\sqrt{\frac{m g R}{\tilde{k}}} x, \quad \Phi(\xi, t)=\phi(x, t)
$$

show that the Sine-Gordon equation can be written in the following standard form:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \tau^{2}} \Phi(\xi, \tau)-\frac{\partial^{2}}{\partial \xi^{2}} \Phi(\xi, \tau)+\sin \Phi(\xi, \tau)=0, \quad \Phi\left(\xi_{-M}, \tau\right)=0, \quad \Phi\left(\xi_{N}, \tau\right)=2 \pi n \tag{1}
\end{equation*}
$$

b) (7 points) Find solutions of above equation assuming the ξ dependence only i.e. take $\Phi(\xi)$ (so called static solutions)

$$
\Phi_{ \pm}(\xi)= \pm 4 \arctan \left(\exp \left(\xi-\xi_{-M}\right)\right)
$$

We are now introducing the Lorentz factor $\gamma=1 / \sqrt{1-v^{2}}, \quad 0 \leq|v|<1$.
c) (4 points) Check that the function

$$
\Phi_{+v}(\xi, \tau)=4 \arctan (\exp [\gamma(\xi-v \tau)])
$$

is also a solution of (1).
d) (5 points) Do the same for the functions

$$
\begin{aligned}
& \Phi_{++}=4 \arctan \left(\frac{v \sinh (\gamma \xi)}{\cosh (v \gamma \tau)}\right) \\
& \Phi_{+-}=4 \arctan \left(\frac{\sinh (v \gamma \tau)}{v \cosh (\gamma \xi)}\right)
\end{aligned}
$$

