Selected Tools of Modern Theoretical Physics 2B, Summer 2025

Lecturer: Dr. Falk Hassler, falk.hassler@uwr.edu.pl Tutorials: M.Sc. Alex Swash, alex.swash@uwr.edu.pl

2. Mathematical foundations (17 points)

To be discussed on Wednesday, 30^{th} April, 2025 in the tutorial. Please indicate your preferences until Friday, 25/04/2025, 21:00:00 on the website.

Exercise 2.1: Groups

- a) (2 points) Determine if the following sets with the specified operation form a group. If not, state at least one group axiom that fails.
 - the set of integers \mathbb{Z} under subtraction -.
 - the set of rational numbers $\mathbb{Q} \setminus \{0\}$ under multiplication \times .
 - the set of 2×2 real matrices with determinant 1 (i.e. $SL(2,\mathbb{R})$) under matrix multiplication.
 - the set of integers \mathbb{Z} under the operation $a \star b = a + b + 1$.
- b) (1 point) Prove that for any group (G, *), the identity element e is unique.

Exercise 2.2: Fields

- a) (2 points) Explain why the set of integers $(\mathbb{Z}, +, \times)$ with the usual addition and multiplication is *not* a field. Which axiom(s) fail?
- b) (2 points) Consider the set $A = \{0, 1\}$ with addition and multiplication defined modulo 2. Verify that $(A, +, \times)$ is a field.

Exercise 2.3: Vector spaces

- a) (2 points) Determine if the following sets are vector spaces over the specified field. If not, explain why.
 - $V = \{(x, y) \in \mathbb{R}^2 | x \ge 0, y \ge 0\}$ over the field \mathbb{R} , with standard vector addition and scalar multiplication.
 - $V = \{f : \mathbb{R} \to \mathbb{R} | f(0) = 1\}$ over the field \mathbb{R} , with standard function addition and scalar multiplication.
 - The set of 2×2 real matrices $M_2(\mathbb{R})$ over the field \mathbb{R} with standard matrix addition and scalar multiplication.
 - The set SO(3) over the field \mathbb{R} with standard matrix addition and scalar multiplication.
- b) (2 points) Let $P_2(\mathbb{R})$ be the set of polynomials with real coefficients of degree at most 2, i.e. $P_2(\mathbb{R}) = \{a_0 + a_1x + a_2x^2 | a_0, a_1, a_2 \in \mathbb{R}\}$. Show that $P_2(\mathbb{R})$ is a vector space over \mathbb{R} with standard polynomial addition and scalar multiplication. What is its dimension? Find a basis.

Exercise 2.4: Combining vector spaces

Let $V = \mathbb{R}^4$, and define the subspaces $U = \text{span}\{(1, 0, 1, 0), (0, 1, 0, 1)\}, W = \text{span}\{(1, 0, -1, 0), (0, 1, 0, -1)\}$

- a) (1 point) Show that $U \cap W = \{0\}$.
- b) (1 point) Show that U + W = V, so along with the previous property we have $U \oplus W = V$.
- Let $X = \mathbb{R}^2$, with the standard unit basis $\{e_1, e_2\}$. Consider $X \otimes X$.
- a) (1 point) Decompose $X \otimes X$ into symmetric and antisymmetric parts.
- b) (1 point) What is the dimension of each part?
- c) (2 points) Generalise these results to $X = R^n$.