Classical Field Theory, Winter 2023/24
Lecture: Prof. Andrzej Frydryszak, andrzej.frydryszak@uwr.edu.pl
Tutorial: Dr. Falk Hassler, falk.hassler@uwr.edu.pl
Assistant: M.Sc. Achilles Gitsis, achilleas.gitsis@uwr.edu.pl

13. Lagrangian densities

(23 points)
To be discussed on Wednesday, $17^{\text {th }}$ January, 2024 in the tutorial.
Please indicate your preferences until Friday, 12/01/2024, 21:00:00 on the website.

Exercise 13.1: Equations of motion

Find the Euler-Lagrange equations for the following Lagrangian densities:
a) (2 points)

$$
\mathcal{L}=-\left(\partial_{\mu} A^{\nu}\right)\left(\partial_{\nu} A^{\mu}\right)+\frac{1}{2} m^{2} A_{\mu} A^{\mu}+\frac{\lambda}{2}\left(\partial_{\mu} A^{\mu}\right)^{2}
$$

b) (2 points)

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} A_{\mu} A^{\mu}
$$

where $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.
c) (2 points)

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} \phi^{2}-\frac{\lambda}{4} \phi^{4},
$$

where $\phi(x)$ is a real scalar field.
d) (2 points)

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(\partial_{\mu} \phi-i e A_{\mu} \phi\right)\left(\partial^{\mu} \phi^{*}+i e A^{\mu} \phi^{*}\right)-\frac{1}{2} m^{2} \phi^{*} \phi,
$$

where $\phi(x)$ is a complex scalar field.

Exercise 13.2: Equation of motion invariance

a) (4 points) Show that when the divergence of an arbitrary field function $f^{\mu}\left(\phi_{i}\right)$ is added to a Lagrangian density, its equations of motion remain unchanged.
Hint: Assume that the variation commutes with the partial derivatives and the variation of the fields ϕ_{i} vanish at infinity.

Exercise 13.3: Equation of motion invariance

The Lagrangian density of a real three component scalar field is given in the following form

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi^{T} \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{T} \phi, \quad \phi=\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right),
$$

where T denotes transposition.
a) (2 points) Find the equations of motion.
b) (3 points) Check if \mathcal{L} is invariant under $S O(3)$.

Hint: Assume rigid solutions, that is for R being an $S O(3)$ rotation matrix, $\partial_{\mu} R=0$ holds. The rotation matrices are given by

$$
\begin{aligned}
& R_{1}\left(\alpha_{1}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha_{1} & -\sin \alpha_{1} \\
0 & \sin \alpha_{1} & \cos \alpha_{1}
\end{array}\right)=e^{\alpha_{1} T_{1}}, \\
& R_{2}\left(\alpha_{2}\right)=\left(\begin{array}{ccc}
\cos \alpha_{2} & 0 & \sin \alpha_{2} \\
0 & 1 & 0 \\
-\sin \alpha_{2} & 0 & \cos \alpha_{2}
\end{array}\right)=e^{\alpha_{2} T_{2}}, \\
& R_{3}\left(\alpha_{3}\right)=\left(\begin{array}{ccc}
\cos \alpha_{3} & -\sin \alpha_{3} & 0 \\
\sin \alpha_{3} & \cos \alpha_{3} & 0 \\
0 & 0 & 1
\end{array}\right)=e^{\alpha_{3} T_{3} .}
\end{aligned}
$$

We are now going to find the Noether currents, which are given by

$$
J_{a}^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{b}\right)}\left(\frac{\delta \phi_{b}}{\delta \omega^{a}}-\frac{\delta x^{\mu}}{\delta \omega^{a}} \partial_{\mu} \phi_{b}\right)+\mathcal{L} \frac{\delta x^{\mu}}{\delta \omega^{a}}, \quad a=1,2,3 .
$$

c) (3 points) Prove

$$
\delta \phi_{a}=\phi_{a}^{\prime}-\phi_{a}=\epsilon_{a b c} \alpha^{b} \phi^{c} .
$$

Hint: Show that the transformed under $S O(3)$ fields for small α_{i} can be written as

$$
\phi_{a}^{\prime} \simeq \phi_{a}+\delta \omega_{i} \cdot\left(T_{i}\right)_{b a} \phi^{b},
$$

where

$$
R_{i}\left(\omega_{i}\right)=e^{\delta \omega_{i} T_{i}}, \quad T_{i}=\left.\frac{\partial R_{i}}{\partial \alpha_{i}}\right|_{\alpha_{i}=0} .
$$

d) (3 points) Show that the Noether currents can be compactly written as

$$
J_{a}^{\mu}=\epsilon_{a b c} \phi^{b} \partial^{\mu} \phi^{c} .
$$

