Classical Field Theory, Winter 2023/24
Lecture: Prof. Andrzej Frydryszak, andrzej.frydryszak@uwr.edu.pl
Tutorial: Dr. Falk Hassler, falk.hassler@uwr.edu.pl
Assistant: M.Sc. Achilles Gitsis, achilleas.gitsis@uwr.edu.pl

11. Pauli-Lubański vector and relativistic particle action

To be discussed on Wednesday, $3^{\text {rd }}$ January, 2024 in the tutorial.
Please indicate your preferences until Friday, 29/12/2023, 21:00:00 on the website.

Exercise 11.1: Pauli-Lubański vector

The Pauli-Lubański vector is defined as

$$
W_{\mu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} M^{\nu \rho} P^{\sigma} .
$$

Show that:
a) (3 points)

$$
W_{\mu} P^{\mu}=0 .
$$

Hint: Keep in mind that $\epsilon_{\mu \nu \rho \sigma}$ is antisymmetric under the exchange of μ and σ, which means that for a generic tensor $T^{\mu \sigma}$ we can write

$$
\epsilon_{\mu \nu \rho \sigma} T^{\mu \sigma}=\frac{1}{2}\left(\epsilon_{\mu \nu \rho \sigma}-\epsilon_{\sigma \nu \rho \mu}\right) T^{\mu \sigma}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma}\left(T^{\mu \sigma}-T^{\sigma \mu}\right) .
$$

b) (3 points)

$$
\left[W_{\mu}, P_{\alpha}\right]=0 .
$$

Hint: $\epsilon_{\mu \nu \rho \sigma}$ is antisymmetric under the exchange of ν and σ as well so you can use the same trick as in the previous task. Also,

$$
[A B, C]=A[B, C]+[A, C] B .
$$

c) (3 points)

$$
W^{2}=-\frac{1}{2} M_{\mu \nu} M^{\mu \nu} P_{\sigma} P^{\sigma}+M_{\mu \sigma} M^{\nu \sigma} P^{\mu} P_{\nu} .
$$

Hint: Use that

$$
\epsilon_{\mu \nu \rho \sigma} \epsilon^{\mu \alpha \beta \gamma}=-\delta_{\nu}^{\alpha} \delta_{\rho}^{\beta} \delta_{\sigma}^{\gamma}+\delta_{\rho}^{\alpha} \delta_{\nu}^{\beta} \delta_{\sigma}^{\gamma}-\delta_{\rho}^{\alpha} \delta_{\sigma}^{\beta} \delta_{\nu}^{\gamma}+\delta_{\sigma}^{\alpha} \delta_{\rho}^{\beta} \delta_{\nu}^{\gamma}-\delta_{\sigma}^{\alpha} \delta_{\nu}^{\beta} \delta_{\rho}^{\gamma}+\delta_{\nu}^{\alpha} \delta_{\sigma}^{\beta} \delta_{\rho}^{\gamma} .
$$

d) (3 points) P^{2} and W^{2} commute with every generator of the Poincaré group.

Exercise 11.2: Relativistic particle action

Consider the following action for a relativistic particle with charge q_{0} in an external field A_{μ}

$$
S=-\frac{1}{m} \int\left(\frac{p_{\mu}}{2}+\frac{q_{0}}{c} A_{\mu}(x)\right) p^{\mu} d \tau, \quad p^{\mu}=m \frac{d x^{\mu}}{d \tau}
$$

a) (4 points) Show that the condition $\delta S=0$ yields the following equations of motion:

$$
\frac{d p_{\mu}}{d \tau}=\frac{q_{0}}{c} F_{\mu \nu} \frac{d x^{\nu}}{d \tau}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

Hint: Don't forget that

$$
\delta \frac{d x^{\mu}}{d \tau}=\frac{d}{d \tau} \delta x^{\mu}, \quad \delta\left(A_{\mu}(x)\right)=\partial_{\nu} A_{\mu} \delta x^{\nu}
$$

