Lecture: Prof. Andrzej Frydryszak, andrzej.frydryszak@uwr.edu.pl
Tutorial: Dr. Falk Hassler, falk.hassler@uwr.edu.pl
Assistant: M.Sc. Achilles Gitsis, achilleas.gitsis@uwr.edu.pl

10. Poincaré group (20 points)

To be discussed on Wednesday, $20^{\text {th }}$ December, 2023 in the tutorial.
Please indicate your preferences until Friday, 15/12/2023, 21:00:00 on the website.

Exercise 10.1: Unitary representation of the Poincaré group

Let $U(\Lambda, a)$ be a unitary representation of the Poincaré group with the multiplication law

$$
\left(\Lambda_{1}, a_{1}\right)\left(\Lambda_{2}, a_{2}\right)=\left(\Lambda_{1} \Lambda_{2}, \Lambda_{1} a_{2}+a_{1}\right)
$$

where $\Lambda \in \mathcal{L}_{+}^{\uparrow}, \Lambda=\left(\Lambda^{\mu}{ }_{\nu}\right)$ and $a=\left(a^{\mu}\right)$. Moreover, let

$$
U_{\rho}(\omega, \epsilon)=e^{\frac{1}{2} \omega^{\mu \nu} M_{\mu \nu}+\epsilon^{\mu} P_{\mu}},
$$

such that

$$
\begin{aligned}
U(\Lambda(\omega), 0) & =U_{\rho}(\omega, 0) \\
U(\mathbb{1}, a(\epsilon)) & =U_{\rho}(0, \epsilon),
\end{aligned}
$$

because

$$
\Lambda \simeq \mathbb{1}+\omega+\mathcal{O}\left(\omega^{2}\right)
$$

and also $\omega^{\mu \nu}=-\omega^{\nu \mu}, M_{\mu \nu}=-M_{\nu \mu}$.
a) (3 points) Show that

$$
U^{-1}(\Lambda, 0) U(\mathbb{1}, \epsilon) U(\Lambda, 0)=U\left(\mathbb{1}, \Lambda^{-1} \epsilon\right)
$$

Hint: Don't forget that the inverse $U^{-1}(\Lambda, a)$ is also an element of the Poincaré group that shall satisfy

$$
U^{-1}(\Lambda, a) U(\Lambda, a)=U(\Lambda, a) U^{-1}(\Lambda, a)=U(\mathbb{1}, 0) .
$$

b) (3 points) Show that

$$
U^{-1}(\Lambda, 0) P_{\mu} U(\Lambda, 0)=\left(\Lambda^{-1}\right)^{\nu}{ }_{\mu} P_{\nu}
$$

Hint: Try to relate this with the previous task and U_{ρ}.
c) (4 points) Find the commutator $\left[M_{\mu \nu}, P_{\rho}\right]$.

Hint: Expand the relation of the previous task in 1st order in ω and keep terms up to ω. Also, keep in mind that a generic tensor $T_{\mu \nu}$ can be written in terms of a symmetric and an antisymmetric component, that is

$$
T_{\mu \nu}=\frac{1}{2}\left(T_{\mu \nu}+T_{\nu \mu}\right)+\frac{1}{2}\left(T_{\mu \nu}-T_{\nu \mu}\right) .
$$

d) (3 points) Show that

$$
U^{-1}(\Lambda, 0) U\left(\Lambda^{\prime}, 0\right) U(\Lambda, 0)=U\left(\Lambda^{-1} \Lambda^{\prime} \Lambda, 0\right)
$$

Hint: Notice the similarity with task a).
e) (4 points) Find the commutator [$M_{\mu \nu}, M_{\rho \sigma}$].

Hint: Expand the relation of the previous task in 1st order in ω, ω^{\prime} and keep terms up to ω, ω^{\prime} and $\omega \omega^{\prime}$.
f) (3 points) Show that $\left[P_{\mu}, P_{\nu}\right]=0$. Hint: Try to do so via calculating $\left[U(\mathbb{1}, a), U\left(\mathbb{1}, a^{\prime}\right)\right]$.

