

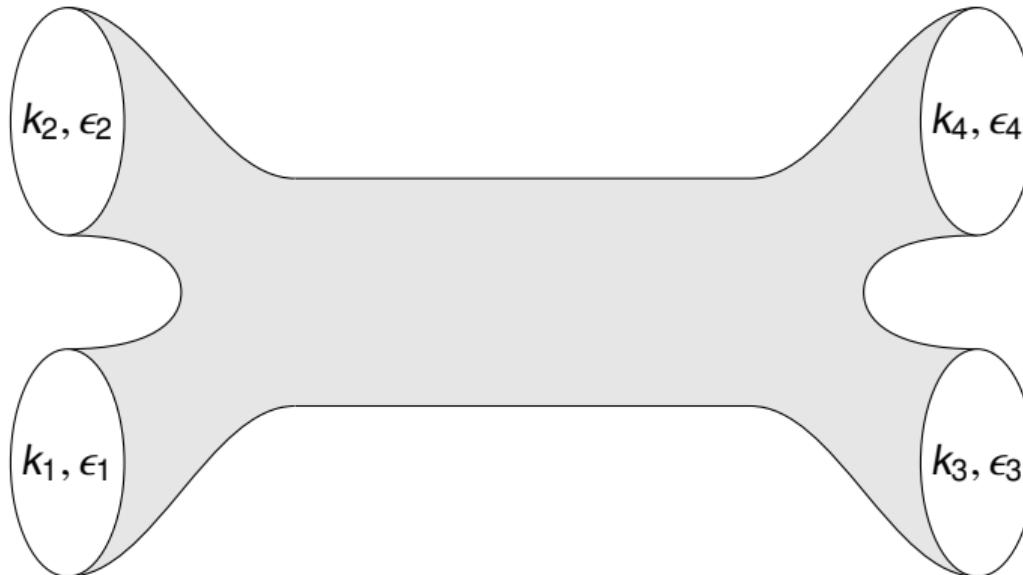
Strings, Membranes, and a Hidden Symmetry Algebra in Quantum Gravity

Falk Hassler

Based on work with Martin Cederwall, Achilleas Gitsis,
Ondřej Hulík, David Osten, Yuho Sakatani and Luca Scala

Uniwersytet
Wrocławski

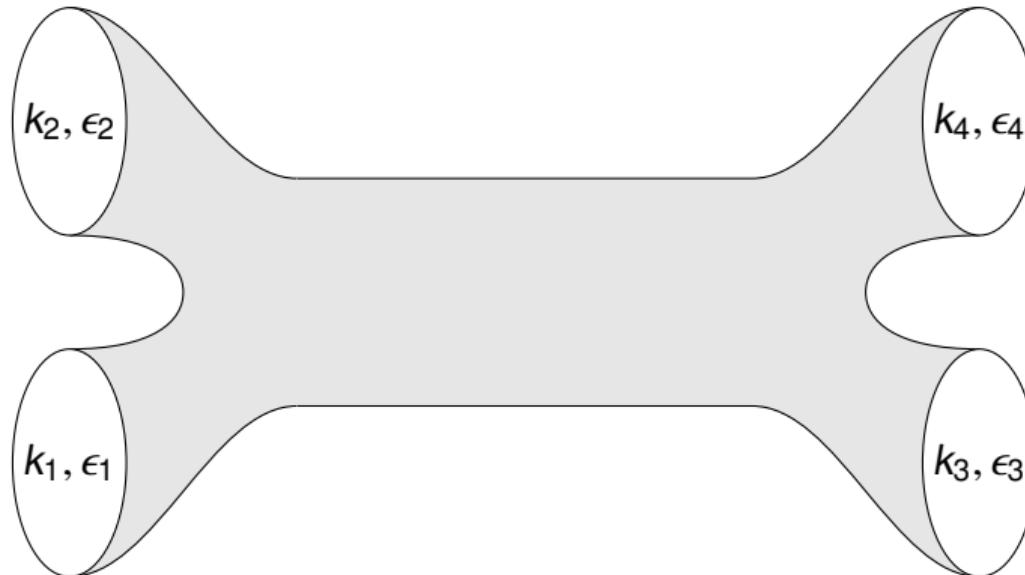
String amplitudes, Effective Field Theory and gravity



massless modes

metric	g_{ij}
gauge potential	B_{ij}
dilaton	ϕ
:	

String amplitudes, Effective Field Theory and gravity



massless modes

metric	g_{ij}
gauge potential	B_{ij}
dilaton	ϕ
:	

$$\mathcal{A}^{\text{tree}}(s, t, u) = g_s^2 \frac{(\alpha')^4}{stu} \frac{\Gamma(1 - \alpha's)\Gamma(1 - \alpha't)\Gamma(1 - \alpha'u)}{\Gamma(1 + \alpha's)\Gamma(1 + \alpha't)\Gamma(1 + \alpha'u)} \mathcal{R}^4$$

String amplitudes, Effective Field Theory and gravity

massless modes

metric	g_{ij}
gauge potential	B_{ij}
dilaton	ϕ
:	

Mandelstam variables

$$s = -(k_1 + k_2)^2$$

$$t = -(k_1 + k_4)^2$$

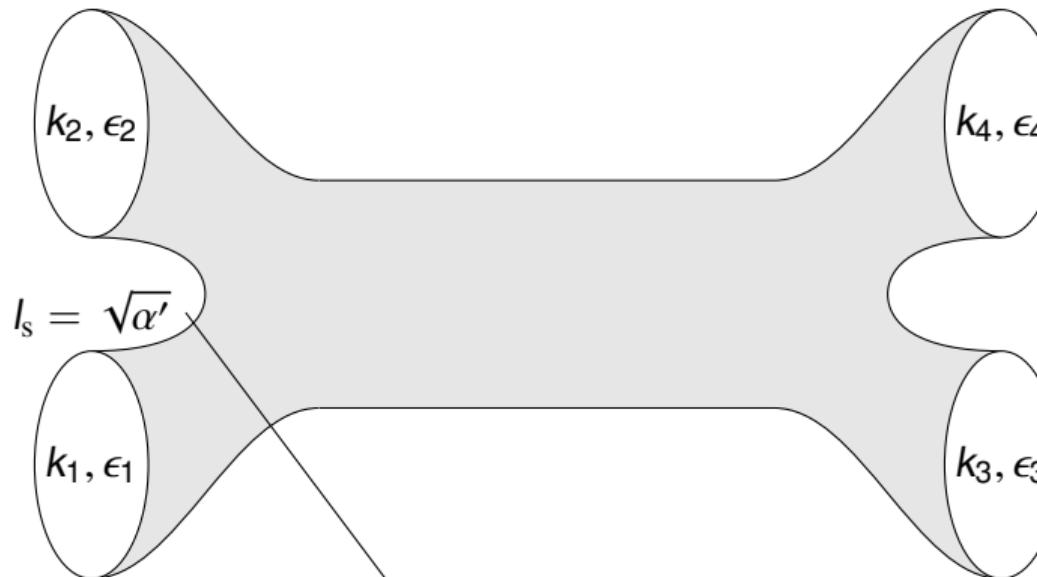
$$u = -(k_1 + k_3)^2$$

k_4, ϵ_4

deals with polarizations ϵ_i

$$\mathcal{A}^{\text{tree}}(s, t, u) = g_s^2 \frac{(\alpha')^4}{stu} \frac{\Gamma(1 - \alpha's)\Gamma(1 - \alpha't)\Gamma(1 - \alpha'u)}{\Gamma(1 + \alpha's)\Gamma(1 + \alpha't)\Gamma(1 + \alpha'u)} \mathcal{R}^4$$

String amplitudes, Effective Field Theory and gravity

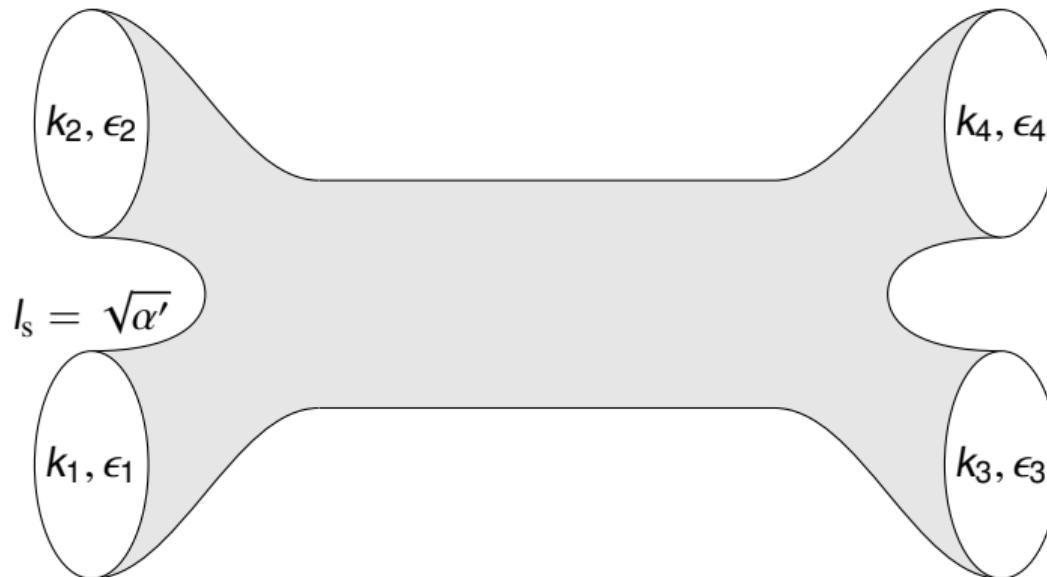


$$\mathcal{A}^{\text{tree}}(s, t, u) = g_s^2 \frac{(\alpha')^4}{stu} \frac{\Gamma(1 - \alpha's)\Gamma(1 - \alpha't)\Gamma(1 - \alpha'u)}{\Gamma(1 + \alpha's)\Gamma(1 + \alpha't)\Gamma(1 + \alpha'u)} \mathcal{R}^4$$

massless modes

metric	g_{ij}
gauge potential	B_{ij}
dilaton	ϕ
:	

String amplitudes, Effective Field Theory and gravity

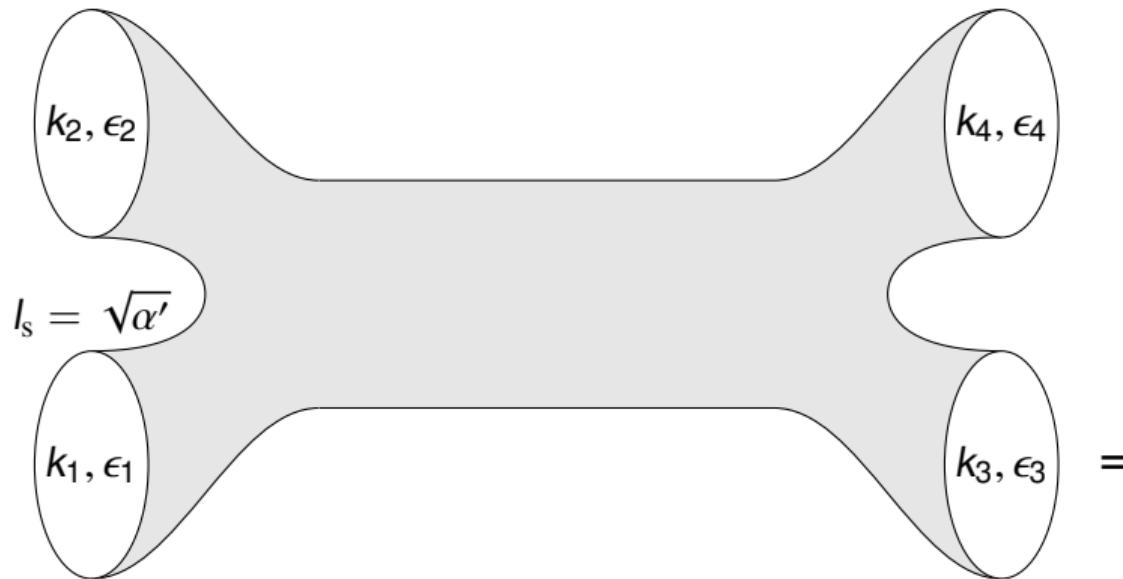


massless modes

metric	g_{ij}
gauge potential	B_{ij}
dilaton	ϕ
:	

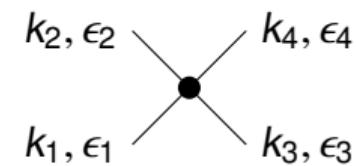
$$\begin{aligned}\mathcal{A}^{\text{tree}}(s, t, u) &= g_s^2 \frac{(\alpha')^4}{stu} \frac{\Gamma(1 - \alpha's)\Gamma(1 - \alpha't)\Gamma(1 - \alpha'u)}{\Gamma(1 + \alpha's)\Gamma(1 + \alpha't)\Gamma(1 + \alpha'u)} \mathcal{R}^4 \\ &= g_s^2 (\alpha')^2 \left[\frac{1}{stu} + 2\zeta(3)(\alpha')^3 + \zeta(5)(\alpha')^5 (s^2 + t^2 + u^2) + \dots \right] \mathcal{R}^4\end{aligned}$$

String amplitudes, Effective Field Theory and gravity



massless modes

metric	g_{ij}
gauge potential	B_{ij}
dilaton	ϕ
:	



$$\mathcal{A}^{\text{tree}}(s, t, u) = g_s^2 \frac{(\alpha')^4}{stu} \frac{\Gamma(1 - \alpha's)\Gamma(1 - \alpha't)\Gamma(1 - \alpha'u)}{\Gamma(1 + \alpha's)\Gamma(1 + \alpha't)\Gamma(1 + \alpha'u)} \mathcal{R}^4$$

$$= g_s^2 (\alpha')^2 \left[\frac{1}{stu} + 2\zeta(3)(\alpha')^3 + \zeta(5)(\alpha')^5 (s^2 + t^2 + u^2) + \dots \right] \mathcal{R}^4$$

String amplitudes, Effective Field Theory and gravity

1. select relevant degrees of freedom (g_{ij}, B_{ij}, ϕ)

String amplitudes, Effective Field Theory and gravity

1. select relevant degrees of freedom (g_{ij}, B_{ij}, ϕ)
2. identify their symmetries
 - ▶ diffeomorphisms, and
 - ▶ Abelian gauge transformations

String amplitudes, Effective Field Theory and gravity

1. select relevant degrees of freedom (g_{ij}, B_{ij}, ϕ)
2. identify their symmetries
 - ▶ diffeomorphisms, and
 - ▶ Abelian gauge transformations
3. expand action by writing all terms allowed by symmetries (α')

R_{ijk}^{l}, $H_{ijk} = 3\partial_{[i}B_{jk]}$, ϕ , ∇_i building blocks

$$S = \frac{2\pi}{(4\pi^2\alpha')^4} \int dx^d \sqrt{-g} e^{-2\phi} \left[\textcolor{red}{c_1} R + \textcolor{red}{c_2} \nabla_i \phi \nabla^i \phi + \textcolor{red}{c_3} H_{ijk} H^{ijk} + \alpha'(\dots) + \dots \right]$$

String amplitudes, Effective Field Theory and gravity

1. select relevant degrees of freedom (g_{ij}, B_{ij}, ϕ)
2. identify their symmetries
 - ▶ diffeomorphisms, and
 - ▶ Abelian gauge transformations
3. expand action by writing all terms allowed by symmetries (α')
 $R_{ijk}{}^l, \quad H_{ijk} = 3\partial_{[i}B_{jk]}, \quad \phi, \quad \nabla_i$ building blocks
4. fix their coefficients by matching the amplitudes

$$S = \frac{2\pi}{(4\pi^2\alpha')^4} \int dx^d \sqrt{-g} e^{-2\phi} \left[R + 4\nabla_i \phi \nabla^i \phi + \frac{1}{12} H_{ijk} H^{ijk} + \alpha'(\dots) + \dots \right]$$

Challenges

- ▶ explosion of terms

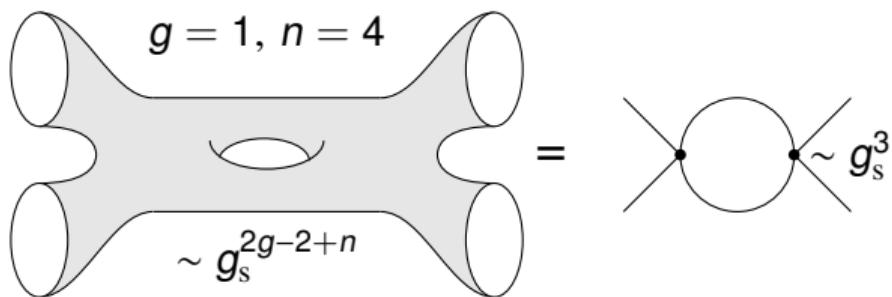
	coeff.	theories
α'^0	3	all
α'^1	8	bos., het.
α'^2	60	bos., het.
α'^3	872	all

Challenges

- ▶ explosion of terms

	coeff.	theories
α'^0	3	all
α'^1	8	bos., het.
α'^2	60	bos., het.
α'^3	872	all

- ▶ string loop corrections ($g_s = e^\phi$)

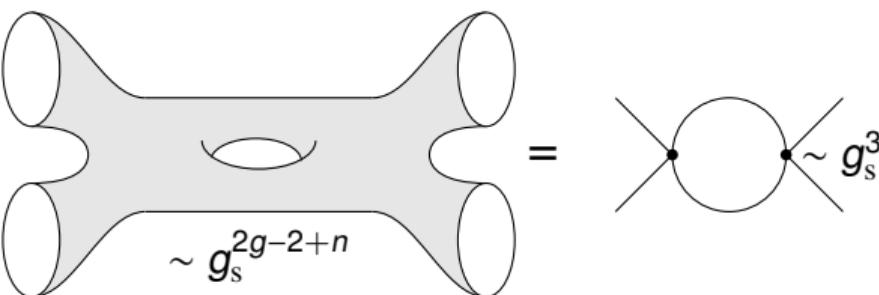
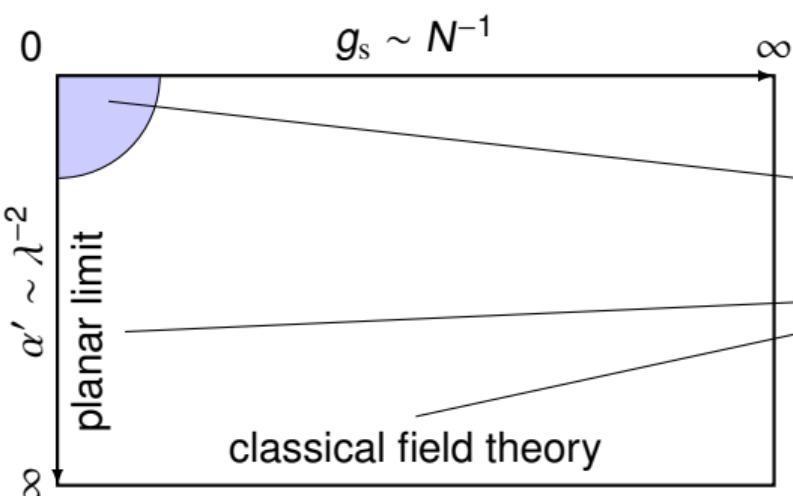


Challenges

- ▶ explosion of terms

	coeff.	theories
α'^0	3	all
α'^1	8	bos., het.
α'^2	60	bos., het.
α'^3	872	all

- ▶ string loop corrections ($g_s = e^\phi$)



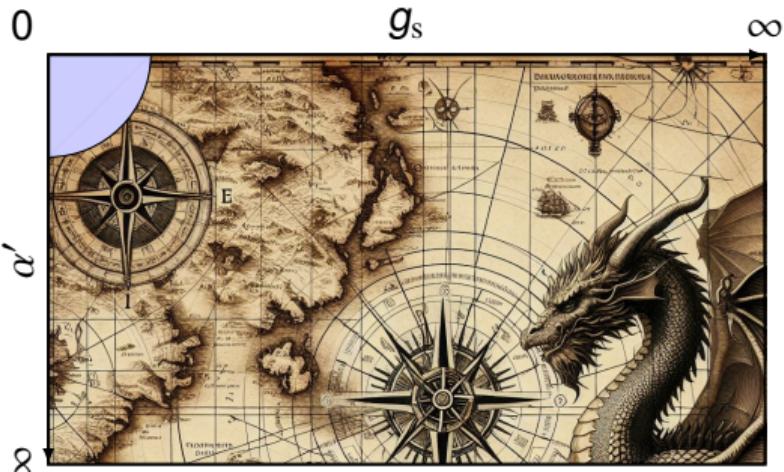
Expansion in α' and g_s ! We know only

- ▶ leading orders in supergravity
- ▶ thanks to holography a bit more

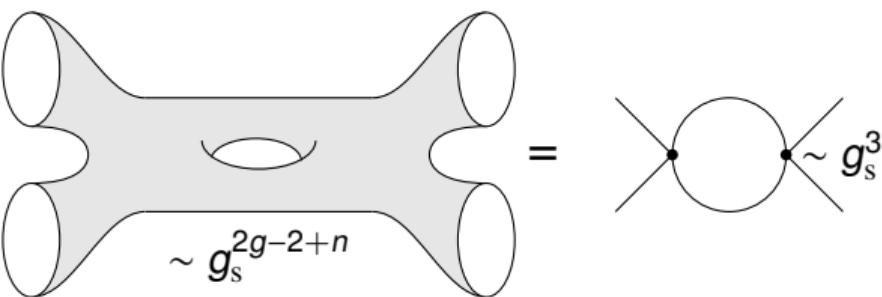
Challenges

- ▶ explosion of terms

	coeff.	theories
α'^0	3	all
α'^1	8	bos., het.
α'^2	60	bos., het.
α'^3	872	all



- ▶ string loop corrections ($g_s = e^\phi$)



Expansion in α' and g_s ! We know only

- ▶ leading orders in supergravity
- ▶ thanks to holography a bit more

How to go beyond?

Idea: new symmetries

1. select relevant degrees of freedom
2. identify their symmetries^{*)}
3. ...

additional symmetries

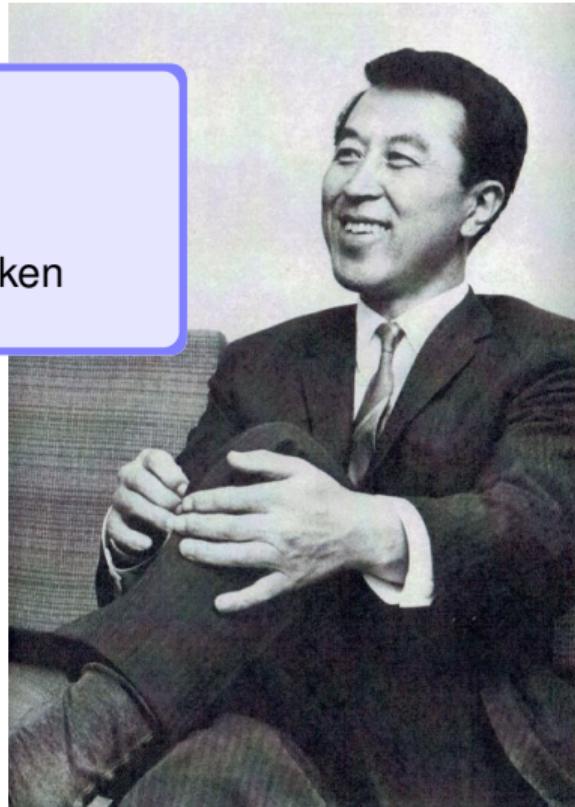
- ▶ fermionic
- ▶ hidden
- ▶ spontaneously broken

Idea: spontaneously broken symmetries

1. select relevant degrees of freedom
2. identify their symmetries^{*)}
3. ...

additional symmetries

- ▶ fermionic
- ▶ hidden
- ▶ spontaneously broken



Yoichiro Nambu, 1965

Idea: spontaneously broken symmetries

1. select relevant degrees of freedom
2. identify their symmetries^{*)}
3. ...

additional symmetries

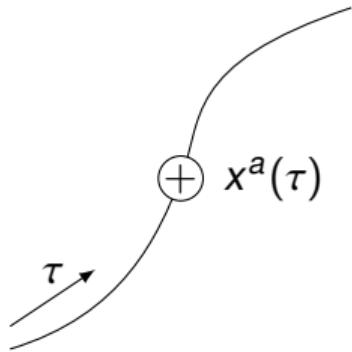
- ▶ fermionic
- ▶ hidden
- ▶ spontaneously broken

Coset construction (non-linear realization)

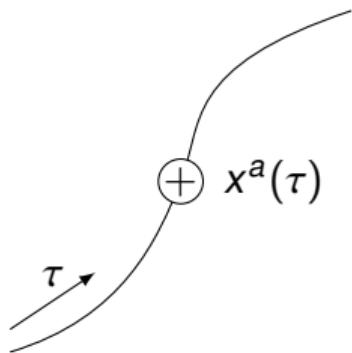
- ▶ G = the full symmetry group
- ▶ H = residual symmetries after spontaneous breaking
- ▶ introduce Maurer-Cartan form $\Omega = g^{-1}dg$ for $g \in G/H$
- ▶ expand it in broken generators t_a as $\Omega = \Omega^a t_a + \dots$

} Lagrangian
 $L = L(\Omega^a, D_a)$

Example: charged particle in an electromagnetic field



Example: charged particle in an electromagnetic field



- ▶ G is the Poincaré group
- ▶ H is the Lorentz group

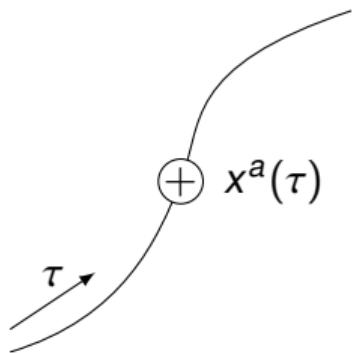
algebra

P_a translations

M_{ab} Lorentz transformations

$$[P_a, P_b] = 0$$

Example: charged particle in an electromagnetic field



- ▶ G is the Poincaré group
- ▶ H is the Lorentz group
- ▶ coset representative $g = e^{x^a P_a}$

$$\Omega = g^{-1} dg = \Omega^a P_a$$

$$\Omega^a = \dot{x}^a d\tau$$

algebra

P_a translations

M_{ab} Lorentz transformations

$$[P_a, P_b] = 0$$

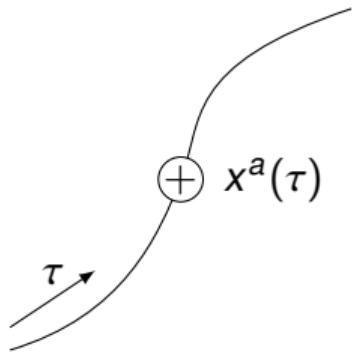
- ▶ invariant Lagrangian

$$L = m \sqrt{-\Omega^a \Omega_a}$$

- ▶ results in field equations

$$m \ddot{x}^a = 0$$

Example: charged particle in an electromagnetic field



algebra

P_a translations

M_{ab} Lorentz transformations

Z_{ab} constant field strength

$$[P_a, P_b] = Z_{ab}$$

- ▶ G is the Maxwell group [Schrader 72]
- ▶ H is the Lorentz group
- ▶ coset representative $g = e^{x^a P_a} e^{\frac{1}{2} \theta^{ab} Z_{ab}}$

$$\Omega = g^{-1} dg = \Omega^a P_a + \frac{1}{2} \Omega^{ab} Z_{ab}$$

$$\Omega^a = \dot{x}^a d\tau$$

$$\Omega^{ab} = (\dot{\theta}^{ab} + \dot{x}^{[a} x^{b]}) d\tau$$

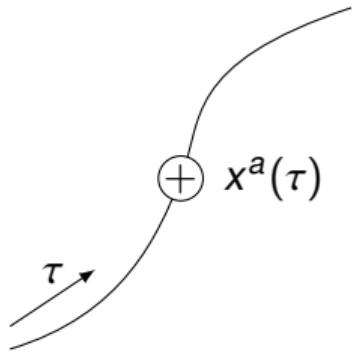
- ▶ invariant Lagrangian

$$L = m \sqrt{-\Omega^a \Omega_a} + \frac{1}{2} f_{ab} \Omega^{ab}$$

- ▶ results in field equations

$$m \ddot{x}^a = f^{ab} \dot{x}_b$$

Example: charged particle in an electromagnetic field



algebra

P_a translations

M_{ab} Lorentz transformations

Z_{ab} constant field strength

$$[P_a, P_b] = Z_{ab}$$

- ▶ G is the Maxwell group [Schrader 72]
- ▶ H is the Lorentz group
- ▶ coset representative $g = e^{x^a P_a} e^{\frac{1}{2} \theta^{ab} Z_{ab}}$

$$\Omega = g^{-1} dg = \Omega^a P_a + \frac{1}{2} \Omega^{ab} Z_{ab}$$

$$\Omega^a = \dot{x}^a d$$

$$\Omega^{ab} = (\partial^{ab})$$

f_{ab} is a Lagrangian multiplier, rendering θ^{ab} non-dynamic.

- ▶ invariant Lagrangian

$$L = m \sqrt{-\Omega^a \Omega_a} + \frac{1}{2} f_{ab} \Omega^{ab}$$

- ▶ results in field equations

$$m \ddot{x}^a = f^{ab} \dot{x}_b$$

Maxwell_∞ algebra, or the road to non-constant fields

1. extend $\text{Lie}(G)$ with new generators from P_a -commutator, like

$$[Z_{ab}, P_c] = Y_{abc}$$

2. Jacobi identity implies

$$Y_{[abc]} = [Z_{[ab}, P_{c]}] = [[P_{[a}, P_{b]}, P_{c]}] = 0$$

Maxwell_∞ algebra, or the road to non-constant fields

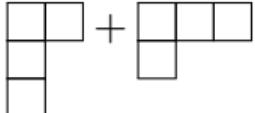
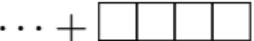
1. extend $\text{Lie}(G)$ with new generators from P_a -commutator, like

$$[Z_{ab}, P_c] = Y_{abc}$$

2. Jacobi identity implies

$$Y_{[abc]} = [Z_{[ab}, P_{c]}] = [[P_{[a}, P_{b]}, P_{c]}] = 0$$

- ▶ repeat ℓ -times to get $\text{Maxwell}_{\ell+1}$ algebra [Bonanos, Gomis 08; Kleinschmidt, Gomis 17]

P_a	Z_{ab}	Y_{abc}	S_{abcd}	T_{abcde}	...
					...

Maxwell_∞ algebra, or the road to non-constant fields

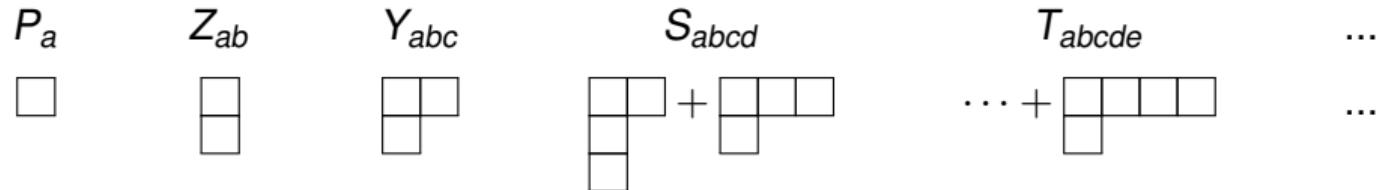
1. extend $\text{Lie}(G)$ with new generators from P_a -commutator, like

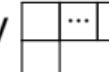
$$[Z_{ab}, P_c] = Y_{abc}$$

2. Jacobi identity implies

$$Y_{[abc]} = [Z_{[ab}, P_{c]}] = [[P_{[a}, P_{b]}, P_{c]}] = 0$$

- ▶ repeat ℓ -times to get $\text{Maxwell}_{\ell+1}$ algebra [Bonanos, Gomis 08; Kleinschmidt, Gomis 17]



- ▶ take subalgebra generated by  to integrate out auxiliary fields θ^{\dots}

$$m\ddot{x}^a = F^{ab}\dot{x}_b \quad \text{with Taylor expansion} \quad F_{ab} = \sum_{\ell=0}^{\infty} f_{abc_1\dots c_{\ell}} x^{c_1} \cdots x^{c_{\ell}}$$

Maxwell_∞ algebra, or the road to non-constant fields

1. extend $\text{Lie}(G)$ with new generators from P_a -commutator, like

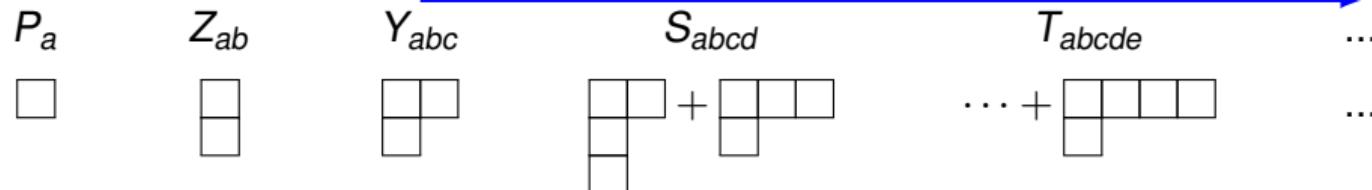
$$[Z_{ab}, P_c] = Y_{abc}$$

2. Jacobi identity implies

$$Y_{[abc]} = [Z_{[ab}, P_{c]}] = [[P_{[a}, P_{b]}, P_{c]}] = 0$$

- repeat ℓ -times to get Maxwell _{$\ell+1$} algebra

$$l_s = \sqrt{\alpha'}$$



- take subalgebra generated by $\begin{smallmatrix} \square & \cdots & \square \end{smallmatrix}$ to integrate out auxiliary fields θ^{\cdots}

$$m \ddot{x}^a = F^{ab} \dot{x}_b \quad \text{with Taylor expansion} \quad F_{ab} = \sum_{\ell=0}^{\infty} f_{abc_1 \dots c_{\ell}} x^{c_1} \cdots x^{c_{\ell}}$$

Hypothesis

α' -corrections in supergravity might be governed by a subgroup of the Maxwell_{∞} group.

Hypothesis

α' -corrections in supergravity might be governed by a subgroup of the Maxwell_{∞} group.

- ▶ which subgroup?

Avoid new, unphysical degrees of freedom!

Hypothesis

α' -corrections in supergravity might be governed by a subgroup of the Maxwell_{∞} group.

- ▶ which subgroup?

Avoid new, unphysical degrees of freedom!

- ▶ HOW?

By having some kind of a coset construction!

Hypothesis

α' -corrections in supergravity might be governed by a subgroup of the Maxwell_{∞} group.

- ▶ which subgroup?

Avoid new, unphysical degrees of freedom!

Batalin-Vilkovisky (BV) formalism

- ▶ HOW?

By having some kind of a coset construction!

Hypothesis

α' -corrections in supergravity might be governed by a subgroup of the Maxwell_{∞} group.

- ▶ which subgroup?

Avoid new, unphysical degrees of freedom!

Batalin-Vilkovisky (BV) formalism

- ▶ HOW?

By having some kind of a coset construction!

Cartan geometry

Hypothesis

α' -corrections in supergravity might be governed by a subgroup of the Maxwell_{∞} group.

- ▶ which subgroup?

Avoid new, unphysical degrees of freedom!

Batalin-Vilkovisky (BV) formalism

- ▶ HOW?

+

By having some kind of a coset construction!

Cartan geometry

Degrees of freedom in linearized gravity. Part I: the complex

useful relations

- frame field

$$e_i^a = \delta_i^a + \varepsilon_i^a$$

$$g_{ij} = \eta_{ab} e_i^a e_j^b$$

- symmetries

$$\delta \varepsilon^a = d\xi^a + \Lambda^a{}_b dx^b$$

$$\varepsilon^a = \varepsilon_i^a dx^i$$

Degrees of freedom in linearized gravity. Part I: the complex

useful relations

► frame field

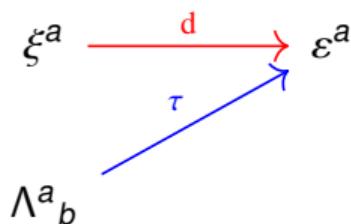
$$e_i^a = \delta_i^a + \varepsilon_i^a$$

$$g_{ij} = \eta_{ab} e_i^a e_j^b$$

► symmetries

$$\delta \varepsilon^a = d\xi^a + \Lambda^a_b dx^b$$

$$\varepsilon^a = \varepsilon_i^a dx^i$$



Degrees of freedom in linearized gravity. Part I: the complex

useful relations

► frame field

$$e_i^a = \delta_i^a + \varepsilon_i^a$$

$$g_{ij} = \eta_{ab} e_i^a e_j^b$$

► symmetries

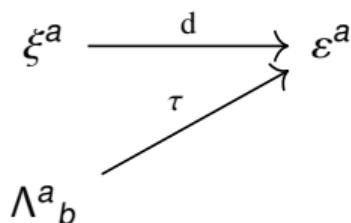
$$\delta \varepsilon^a = d\xi^a + \Lambda^a{}_b dx^b$$

$$\varepsilon^a = \varepsilon_i^a dx^i$$

► spin-connection

$$\delta \omega^a{}_b = d\Lambda^a{}_b$$

$$\nabla_i e_j^a = 0$$



Degrees of freedom in linearized gravity. Part I: the complex

useful relations

► frame field

$$e_i^a = \delta_i^a + \varepsilon_i^a$$

$$g_{ij} = \eta_{ab} e_i^a e_j^b$$

► symmetries

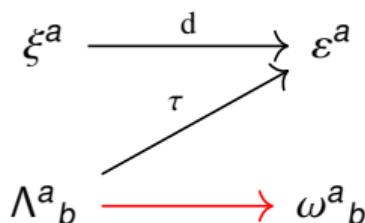
$$\delta \varepsilon^a = d\xi^a + \Lambda^a{}_b dx^b$$

$$\varepsilon^a = \varepsilon_i^a dx^i$$

► spin-connection

$$\delta \omega^a{}_b = d\Lambda^a{}_b$$

$$\nabla_i e_j^a = 0$$



Degrees of freedom in linearized gravity. Part I: the complex

useful relations

► frame field

$$e_i^a = \delta_i^a + \varepsilon_i^a$$

$$g_{ij} = \eta_{ab} e_i^a e_j^b$$

► symmetries

$$\delta \varepsilon^a = d\xi^a + \Lambda^a{}_b dx^b$$

$$\varepsilon^a = \varepsilon_i^a dx^i$$

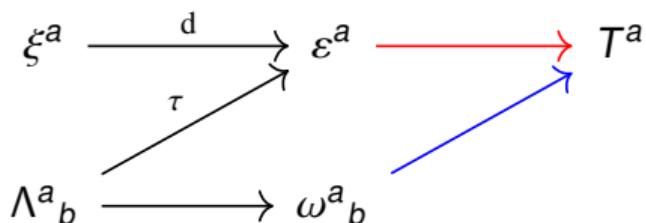
► spin-connection

$$\delta \omega^a{}_b = d\Lambda^a{}_b$$

$$\nabla_i e_j^a = 0$$

► torsion

$$T^a = \textcolor{red}{d\varepsilon^a} + \textcolor{blue}{\omega^a{}_b \wedge dx^b}$$



Degrees of freedom in linearized gravity. Part I: the complex

useful relations

► frame field

$$e_i^a = \delta_i^a + \varepsilon_i^a$$

$$g_{ij} = \eta_{ab} e_i^a e_j^b$$

► symmetries

$$\delta \varepsilon^a = d\xi^a + \Lambda^a{}_b dx^b$$

$$\varepsilon^a = \varepsilon_i^a dx^i$$

► spin-connection

$$\delta \omega^a{}_b = d\Lambda^a{}_b$$

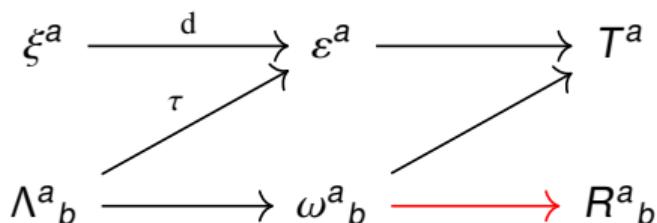
$$\nabla_i e_j^a = 0$$

► torsion

$$T^a = d\varepsilon^a + \omega^a{}_b \wedge dx^b$$

► curvature

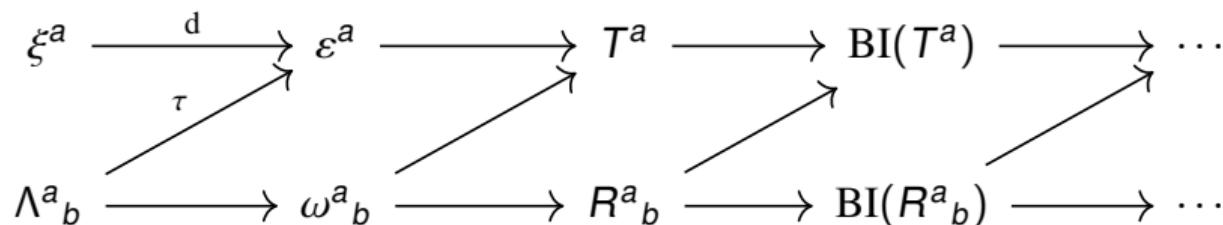
$$R^a{}_b = \textcolor{red}{d\omega^a{}_b}$$



Degrees of freedom in linearized gravity. Part I: the complex

useful relations

- ▶ frame field $e_i^a = \delta_i^a + \varepsilon_i^a$ $\tau(\Lambda^a_b)$ $g_{ij} = \eta_{ab} e_i^a e_j^b$
- ▶ symmetries $\delta \varepsilon^a = d\xi^a + \Lambda^a_b dx^b$ $\varepsilon^a = \varepsilon_i^a dx^i$
- ▶ spin-connection $\delta \omega^a_b = d\Lambda^a_b$ $\tau(\omega^a_b)$ $\nabla_i e_j^a = 0$
- ▶ torsion $T^a = d\varepsilon^a + \omega^a_b \wedge dx^b$
- ▶ curvature $R^a_b = d\omega^a_b$



Degrees of freedom in linearized gravity. Part I: the complex

useful relations

► frame field

$$e_i^a = \delta_i^a + \varepsilon_i^a$$

$$g_{ij} = \eta_{ab} e_i^a e_j^b$$

► symmetries

$$\delta \varepsilon^a = d\xi^a + \Lambda^a{}_b dx^b$$

$$\varepsilon^a = \varepsilon_i^a dx^i$$

► spin-connection

$$\delta \omega^a{}_b = d\Lambda^a{}_b$$

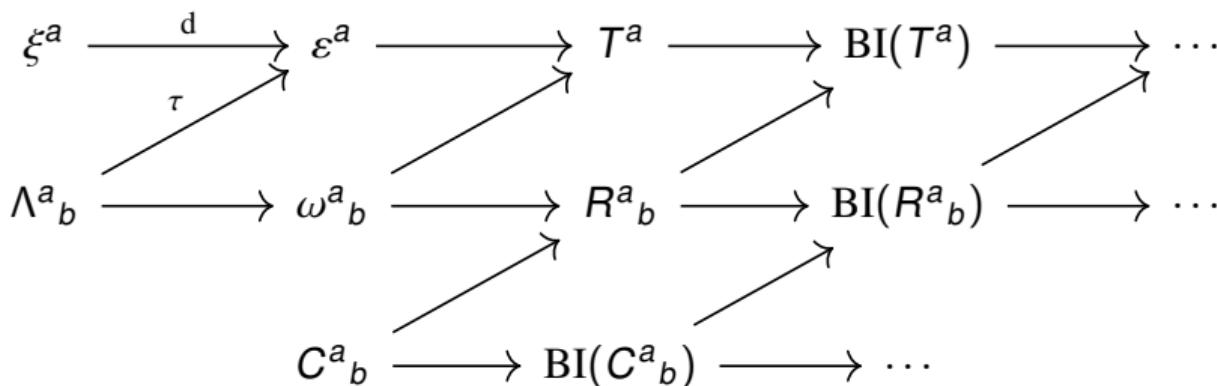
$$\nabla_i e_j^a = 0$$

► torsion

$$T^a = d\varepsilon^a + \omega^a{}_b \wedge dx^b$$

► curvature

$$R^a{}_b = d\omega^a{}_b$$



Degrees of freedom in linearized gravity. Part I: the complex

useful relations

► frame field

$$e_i^a = \delta_i^a + \varepsilon_i^a$$

$$g_{ij} = \eta_{ab} e_i^a e_j^b$$

► symmetries

$$\delta \varepsilon^a = d\xi^a + \Lambda^a{}_b dx^b$$

$$\varepsilon^a = \varepsilon_i^a dx^i$$

► spin-connection

$$\delta \omega^a{}_b = d\Lambda^a{}_b$$

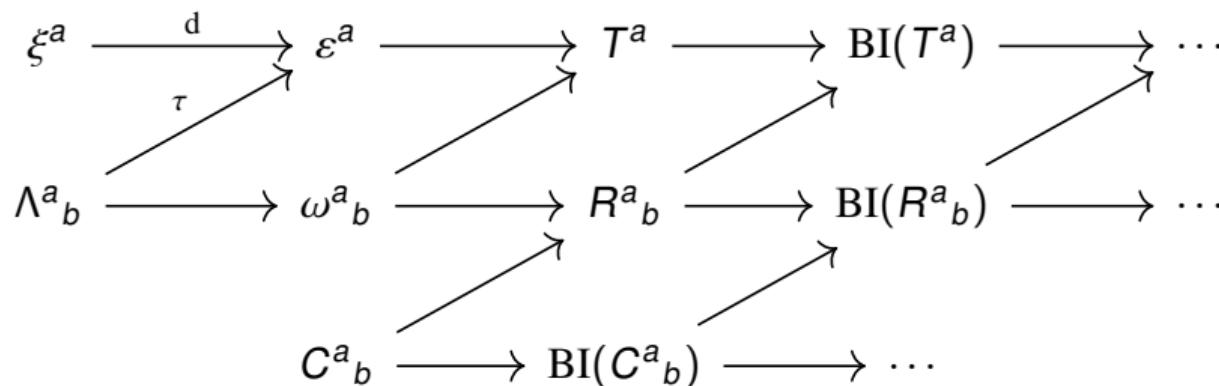
$$\nabla_i e_j^a = 0$$

► torsion

$$T^a = d\varepsilon^a + \omega^a{}_b \wedge dx^b$$

► curvature

$$R^a{}_b = d\omega^a{}_b$$

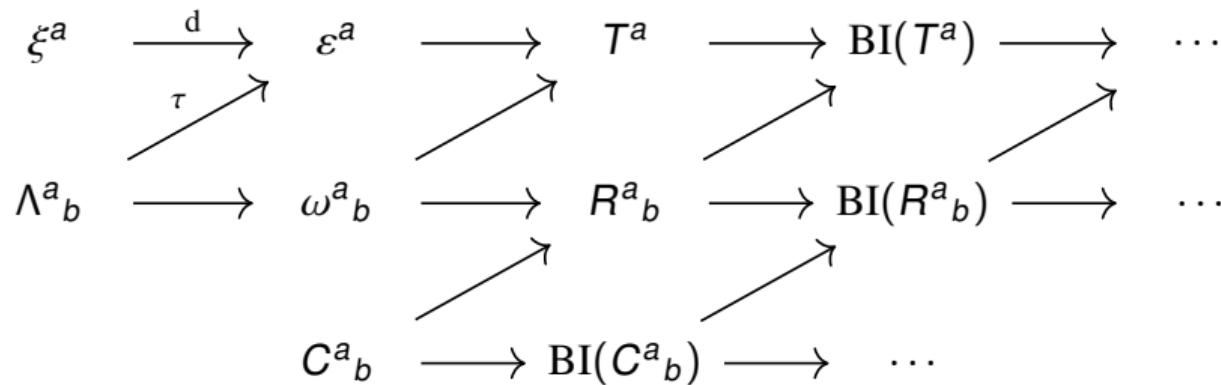


$$d^2 = 0$$

$$\tau^2 = 0$$

$$d \circ \tau + \tau \circ d = 0$$

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]



Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

$$\begin{array}{ccccccc}
 \xi^a & \xrightarrow{d} & \varepsilon^a & \longrightarrow & T^a & \longrightarrow & \dots \\
 & \tau \nearrow & \nearrow & & \nearrow & & \\
 \Lambda^a{}_b & \xrightarrow{\quad} & \omega^a{}_b & \longrightarrow & R^a{}_b & \longrightarrow & \dots \\
 & & & \nearrow & \nearrow & & \\
 & & C^a{}_b & \longrightarrow & \text{BI}(C^a{}_b) & \longrightarrow & \dots
 \end{array}$$

- ▶ compute cohomology for the exact sequence

$$0 \longrightarrow \Lambda_{ab} \xrightarrow{\tau} \varepsilon_{ai} \longrightarrow 0$$

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

$$\begin{array}{ccccccc}
 \xi^a & \xrightarrow{d} & \varepsilon^a & \longrightarrow & T^a & \longrightarrow & \text{BI}(T^a) \longrightarrow \dots \\
 & \nearrow \tau & & \nearrow & \nearrow & & \nearrow \\
 \Lambda^a{}_b & \longrightarrow & \omega^a{}_b & \longrightarrow & R^a{}_b & \longrightarrow & \text{BI}(R^a{}_b) \longrightarrow \dots \\
 & & \nearrow & & \nearrow & & \\
 & & C^a{}_b & \longrightarrow & \text{BI}(C^a{}_b) & \longrightarrow & \dots
 \end{array}$$

- ▶ compute cohomology for the exact sequence

$$\begin{array}{ccccccc}
 \emptyset & \longrightarrow & \Lambda_{ab} & \xrightarrow{\tau} & \varepsilon_{ai} & \longrightarrow & 0 \\
 & & \boxed{\begin{array}{|c|c|}\hline & \\ \hline & \\ \hline \end{array}} & & \boxed{\begin{array}{|c|c|}\hline & \\ \hline & \\ \hline \end{array}} \times \boxed{\begin{array}{|c|c|}\hline & \\ \hline & \\ \hline \end{array}} & \\
 \end{array}$$

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

$$\begin{array}{ccccccc}
 \xi^a & \xrightarrow{d} & \varepsilon^a & \longrightarrow & T^a & \longrightarrow & \text{BI}(T^a) \longrightarrow \dots \\
 & \nearrow \tau & & \nearrow & \nearrow & & \nearrow \\
 \Lambda^a{}_b & \longrightarrow & \omega^a{}_b & \longrightarrow & R^a{}_b & \longrightarrow & \text{BI}(R^a{}_b) \longrightarrow \dots \\
 & & & \nearrow & \nearrow & & \\
 & & C^a{}_b & \longrightarrow & \text{BI}(C^a{}_b) & \longrightarrow & \dots
 \end{array}$$

- ▶ compute cohomology for the exact sequence

$$\begin{array}{ccccccc}
 \emptyset & \longrightarrow & \Lambda_{ab} & \xrightarrow{\tau} & \varepsilon_{ai} & \longrightarrow & 0 \\
 & & \boxed{} & & \boxed{} + \boxed{} & & \\
 \end{array}$$

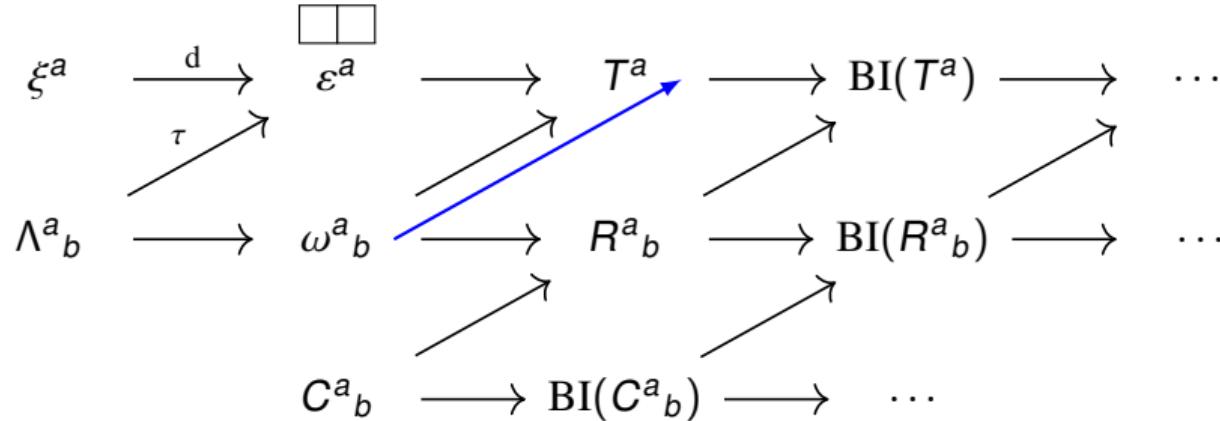
Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

$$\begin{array}{ccccccc}
 \xi^a & \xrightarrow{d} & \begin{matrix} \square \\ \square \end{matrix} & \xrightarrow{\quad} & T^a & \longrightarrow & \text{BI}(T^a) \longrightarrow \dots \\
 & \tau \nearrow & & & & & \\
 \Lambda^a{}_b & \longrightarrow & \omega^a{}_b & \xrightarrow{\quad} & R^a{}_b & \longrightarrow & \text{BI}(R^a{}_b) \longrightarrow \dots \\
 & & & \searrow & & & \\
 & & C^a{}_b & \longrightarrow & \text{BI}(C^a{}_b) & \longrightarrow & \dots
 \end{array}$$

- ▶ compute cohomology for the exact sequence

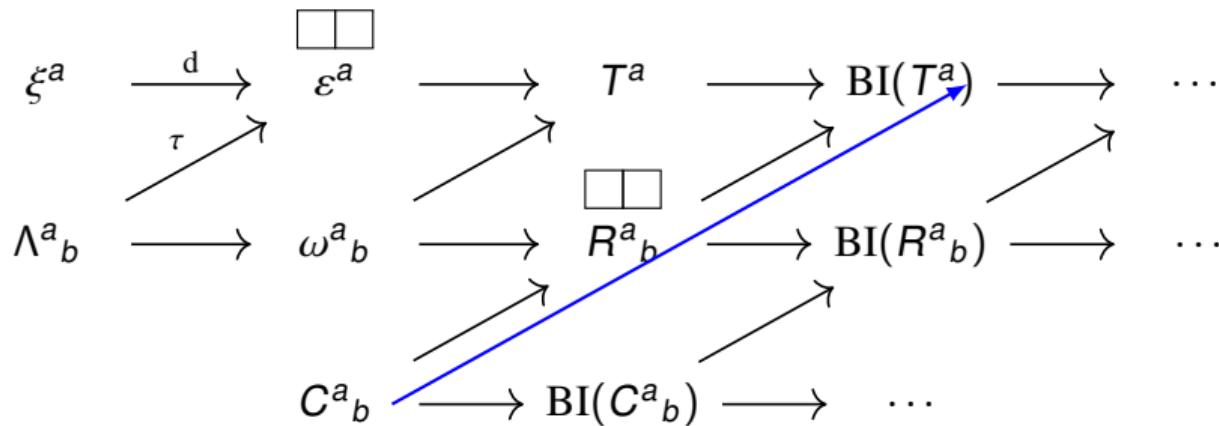
$$\begin{array}{ccccccc}
 \emptyset & \longrightarrow & \begin{matrix} \square \\ \square \end{matrix} & \xrightarrow{\tau} & \begin{matrix} \square \\ \square \end{matrix} + \begin{matrix} \square \\ \square \end{matrix} & \longrightarrow & 0
 \end{array}$$

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]



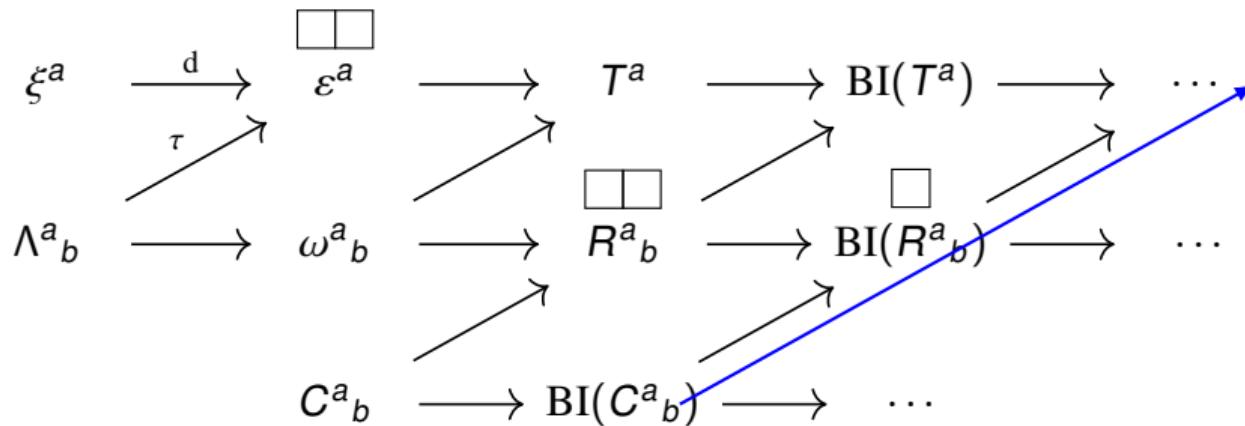
- ▶ compute cohomology for all diagonal exact sequences

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]



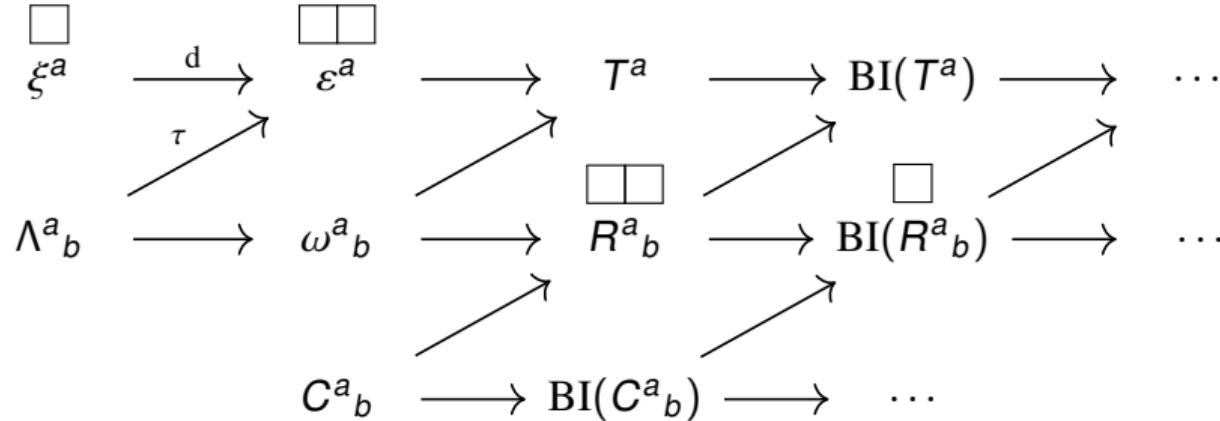
- ▶ compute cohomology for all diagonal exact sequences
- ▶ only with Weyl tensor cohomology classes of ε^a and R^a_b match

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]



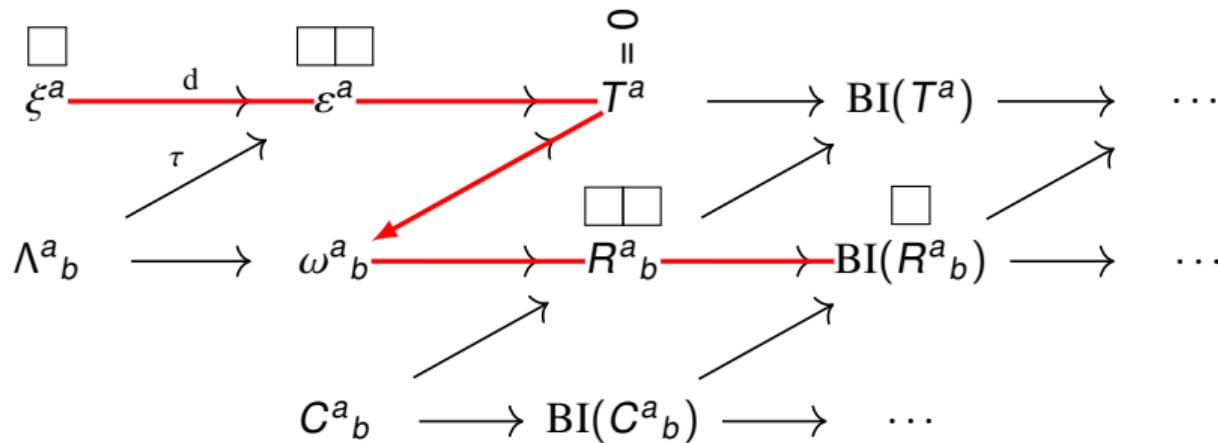
- ▶ compute cohomology for all diagonal exact sequences
- ▶ only with Weyl tensor cohomology classes of ε^a and $R^a{}_b$ match

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]



- ▶ compute cohomology for all diagonal exact sequences
- ▶ only with Weyl tensor cohomology classes of ε^a and R^a_b match

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

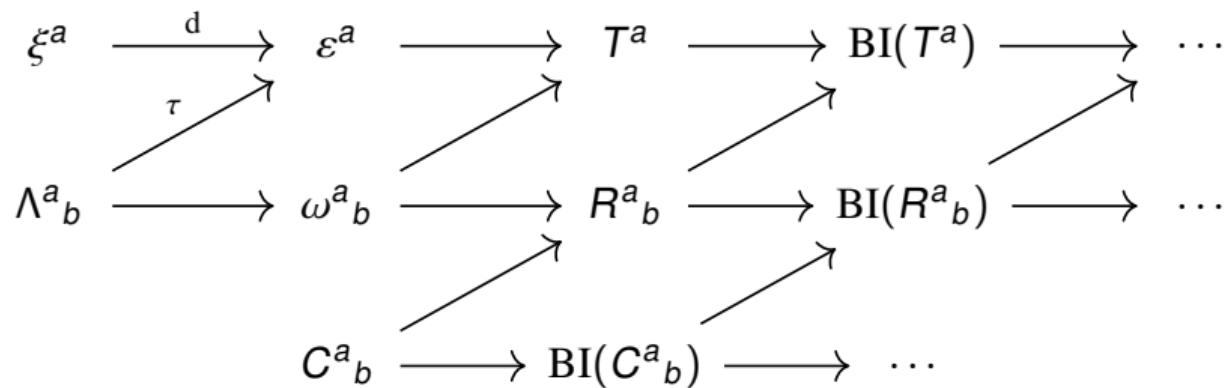


- ▶ compute cohomology for all diagonal exact sequences
- ▶ only with Weyl tensor cohomology classes of ε^a and R^a_b match
- ▶ after imposing torsion constraint ($T^a = 0$), we get

gauge \longrightarrow dof \longrightarrow eom \longrightarrow Bianchi

The background independent version and Cartan geometry

- ▶ idea: compress complex into a chain



The background independent version and Cartan geometry

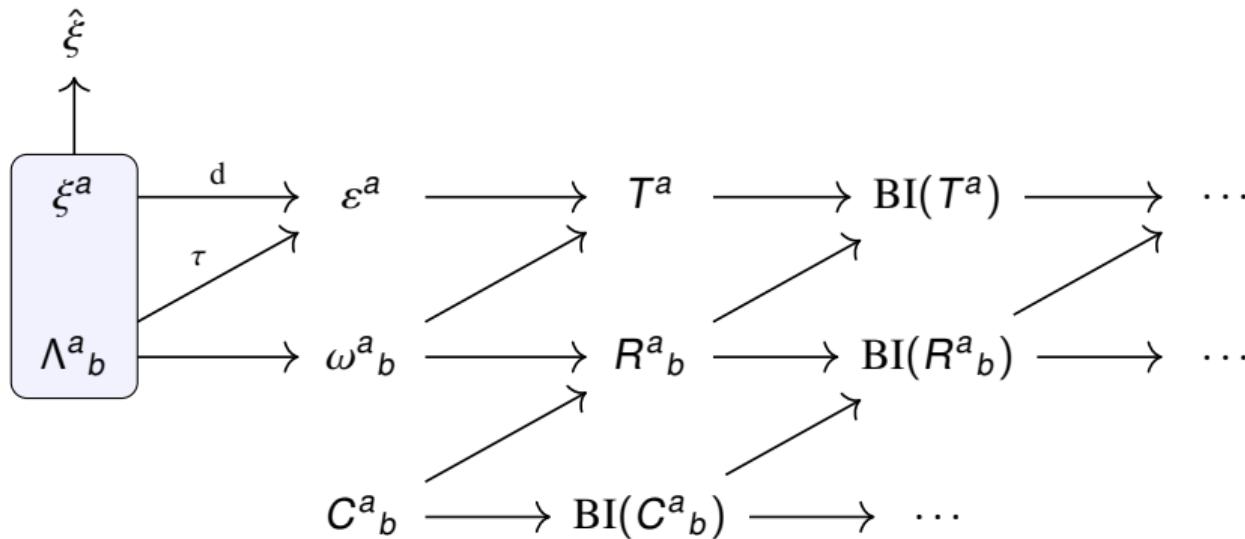
- idea: compress complex into a chain

algebra from point particle

P_a translations

M_{ab} Lorentz transformations

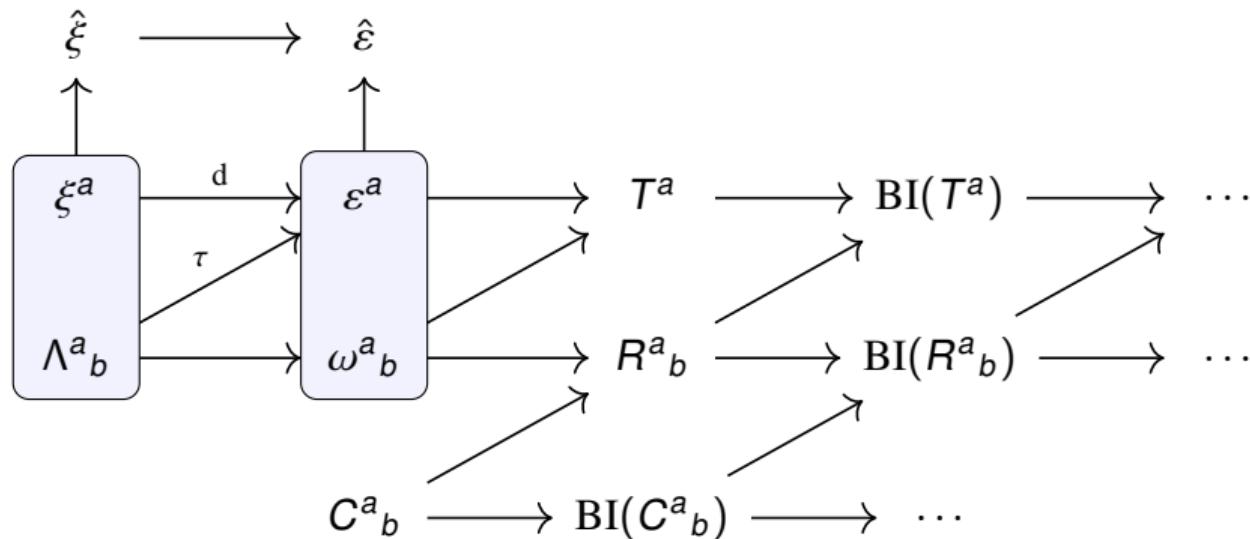
$$\hat{\xi} = \xi^a P_a + \Lambda^{ab} M_{ab}$$



The background independent version and Cartan geometry

- idea: compress complex into a chain

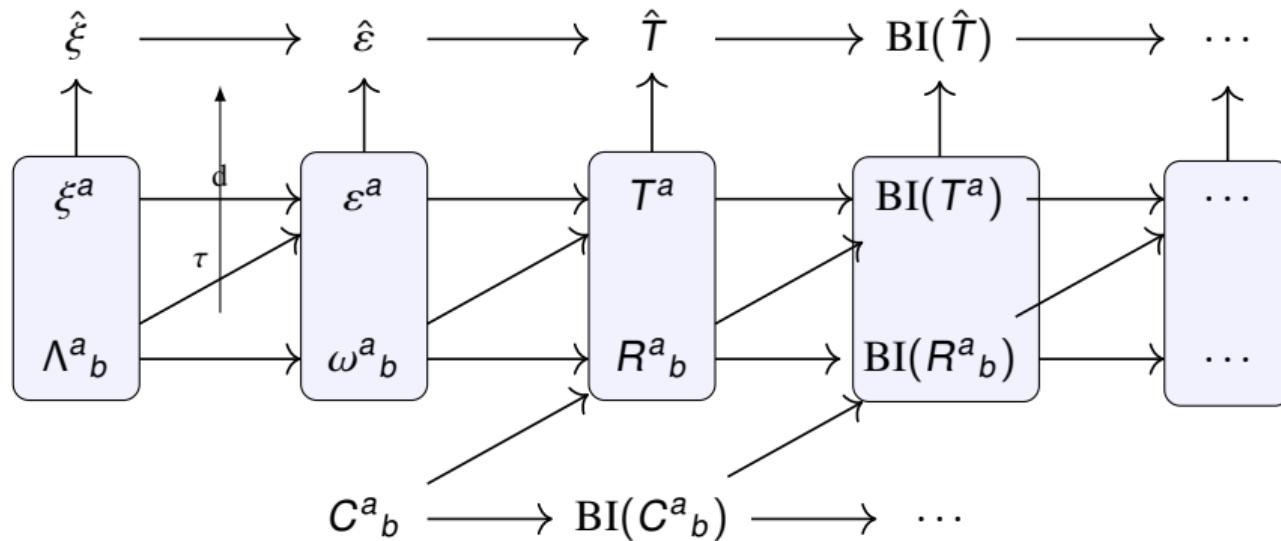
$$\hat{\xi} = \xi^a P_a + \Lambda^{ab} M_{ab}, \quad \hat{\varepsilon} = \varepsilon^a P_a + \omega^{ab} M_{ab}$$



The background independent version and Cartan geometry

- ▶ idea: compress complex into a chain

$$\hat{\xi} = \xi^a P_a + \Lambda^{ab} M_{ab}, \quad \hat{\varepsilon} = \varepsilon^a P_a + \omega^{ab} M_{ab}, \quad \dots$$



The background independent version and Cartan geometry

- ▶ idea: compress complex into a chain

$$\hat{\xi} = \xi^a P_a + \Lambda^{ab} M_{ab}, \quad \hat{\varepsilon} = \varepsilon^a P_a + \omega^{ab} M_{ab}, \quad \dots$$

- ▶ and use exterior derivative

$$\hat{d} = d + \hat{e} \wedge \quad \text{with}$$

$$\hat{e} = e_i^a P_a dx^i + \omega^{ab} M_{ab} \quad \text{Cartan connection}$$

$$\hat{\xi} \xrightarrow{\hat{d}} \hat{\varepsilon} \longrightarrow \hat{T} \longrightarrow \text{BI}(\hat{T}) \longrightarrow \dots$$

The background independent version and Cartan geometry

- ▶ idea: compress complex into a chain

$$\hat{\xi} = \xi^a P_a + \Lambda^{ab} M_{ab}, \quad \hat{\varepsilon} = \varepsilon^a P_a + \omega^{ab} M_{ab}, \quad \dots$$

- ▶ and use exterior derivative

$$\hat{d} = d + \hat{e} \wedge \quad \text{with}$$

$$\hat{e} = e_i^a P_a dx^i + \omega^{ab} M_{ab} \quad \text{Cartan connection}$$

- ▶ substituting $\hat{\varepsilon} \rightarrow \hat{e}$ in the chain

$$\hat{\xi} \xrightarrow{\hat{d}} \hat{e} \longrightarrow \hat{T} \longrightarrow \text{BI}(\hat{T}) \longrightarrow \dots$$

The background independent version and Cartan geometry

- ▶ idea: compress complex into a chain

$$\hat{\xi} = \xi^a P_a + \Lambda^{ab} M_{ab}, \quad \hat{\varepsilon} = \varepsilon^a P_a + \omega^{ab} M_{ab}, \quad \dots$$

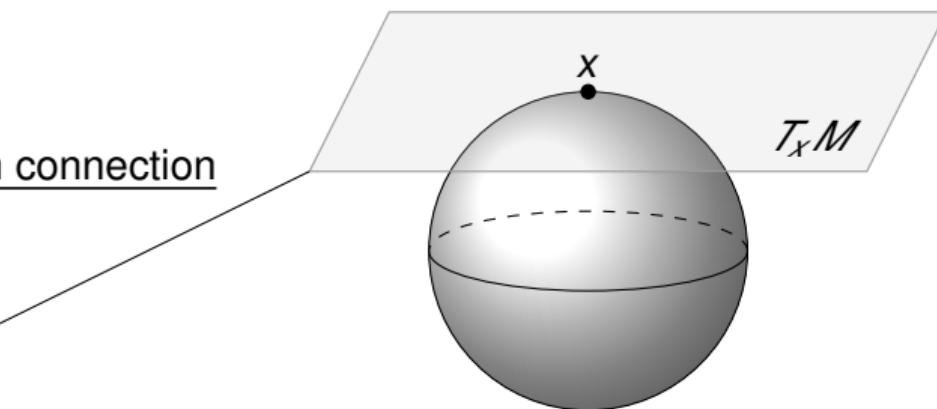
- ▶ and use exterior derivative

$$\hat{d} = d + \hat{e} \wedge \quad \text{with}$$

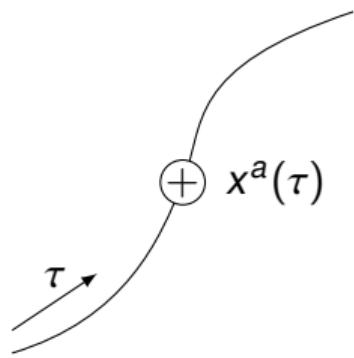
$$\hat{e} = e_i^a P_a dx^i + \omega^{ab} M_{ab} \quad \text{Cartan connection}$$

- ▶ substituting $\hat{\varepsilon} \rightarrow \hat{e}$ in the chain
- ▶ only input is model space G/H

$$\hat{\xi} \xrightarrow{\hat{d}} \hat{e} \longrightarrow \hat{T} \longrightarrow \text{BI}(\hat{T}) \longrightarrow \dots$$



Where is the subalgebra of Maxwell_∞?



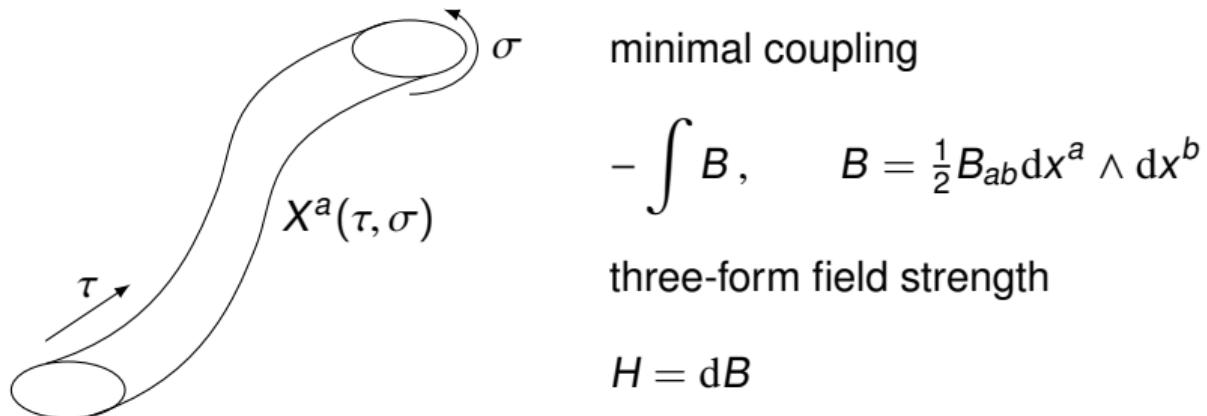
minimal coupling

$$-q \int A, \quad A = A_a dx^a$$

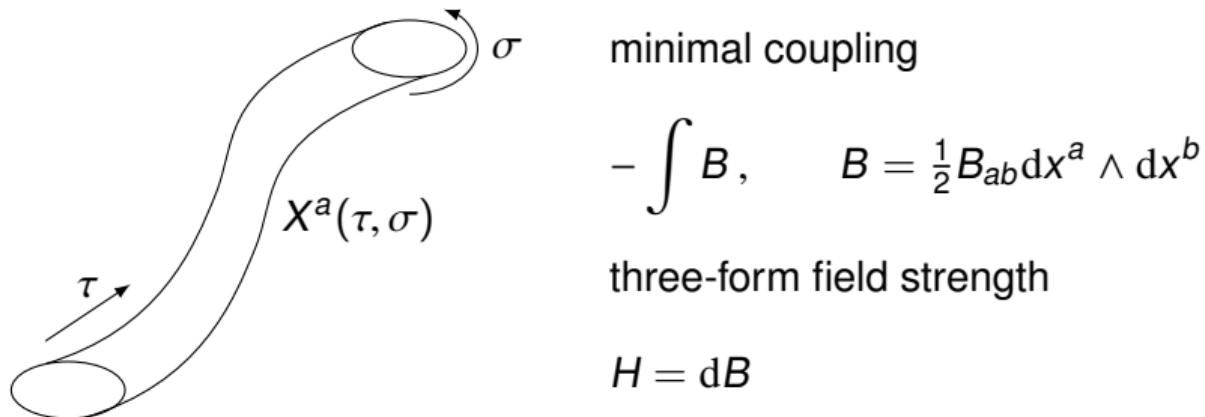
two-form field strength

$$F = dA, \quad F = \frac{1}{2} F_{ab} dx^a \wedge dx^b$$

Where is the subalgebra of Maxwell_{∞} ?



Where is the subalgebra of Maxwell_{∞} ?



- ▶ gauge transformation
- ▶ gauge transformation for the gauge transformation

$$\delta B = d\varphi + L_\xi B$$

diffeomorphism

$$\delta\varphi = d\chi$$

Where is the subalgebra of Maxwell_{∞} ?

$$\begin{array}{ccc} \bullet & & \square + \bar{\square} \\ & \xrightarrow{D} & \xi_A \\ \chi & & \end{array}$$

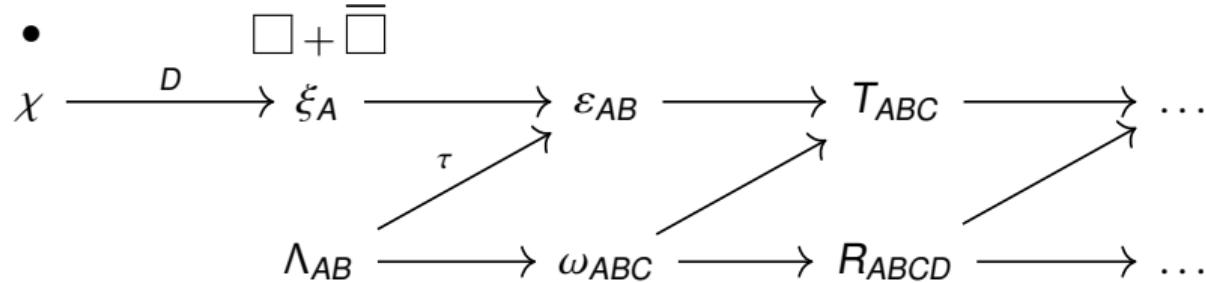
- ▶ gauge transformation

$$\delta B = d\varphi + L_{\xi} B, \quad \text{with combined parameter} \quad \xi^A = (\xi^a \quad \varphi_a)$$

- ▶ gauge transformation for the gauge transformation

$$\delta\varphi = d\chi$$

Where is the subalgebra of Maxwell_∞?



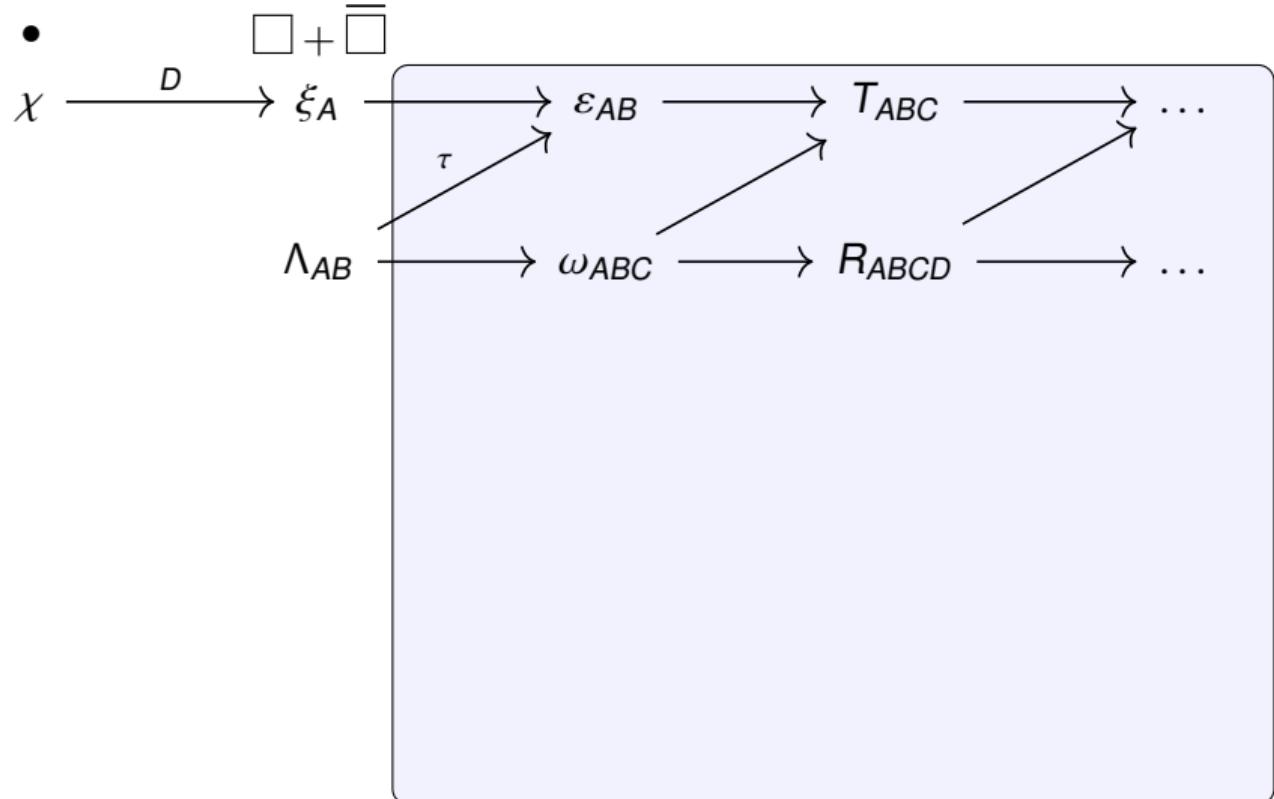
- ▶ gauge transformation

$$\delta B = d\varphi + L_\xi B, \quad \text{with combined parameter} \quad \xi^A = (\xi^a \quad \varphi_a)$$

- ▶ gauge transformation for the gauge transformation

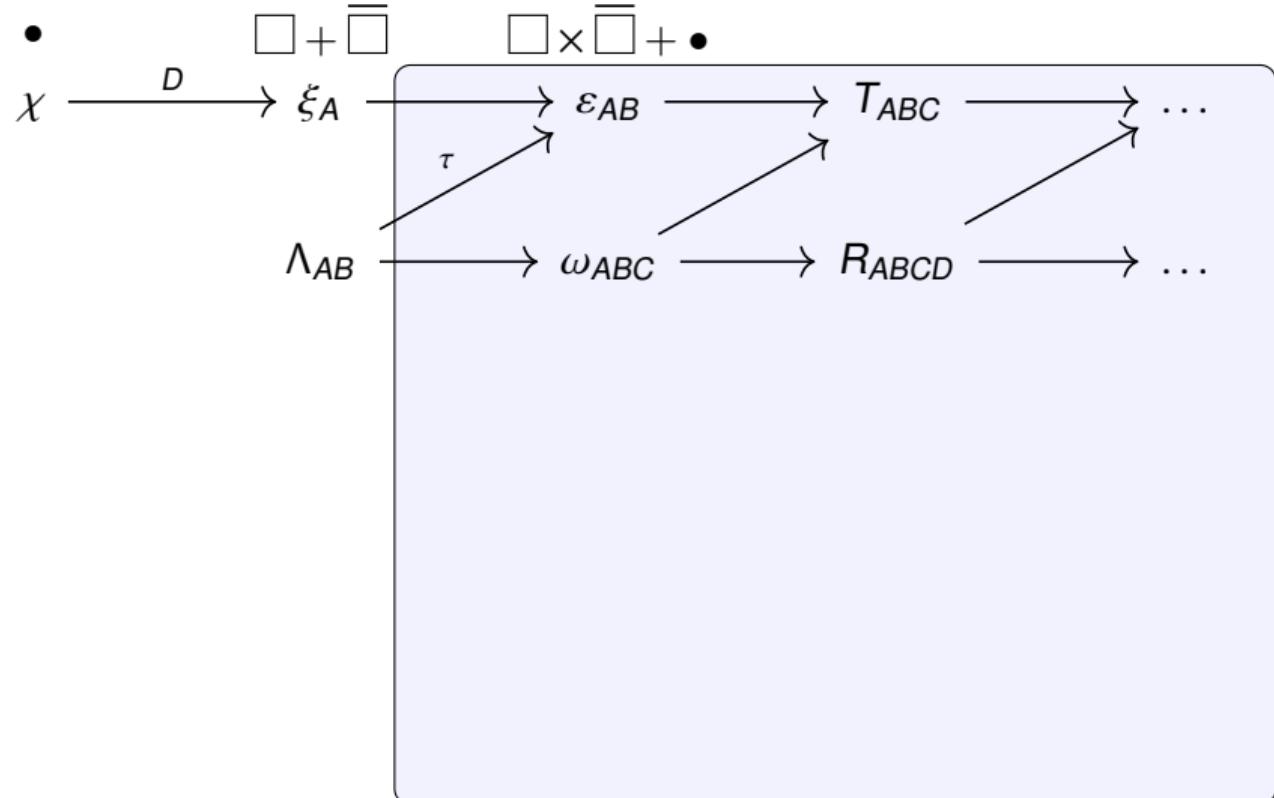
$$\delta\varphi = d\chi$$

Where is the subalgebra of Maxwell_∞?



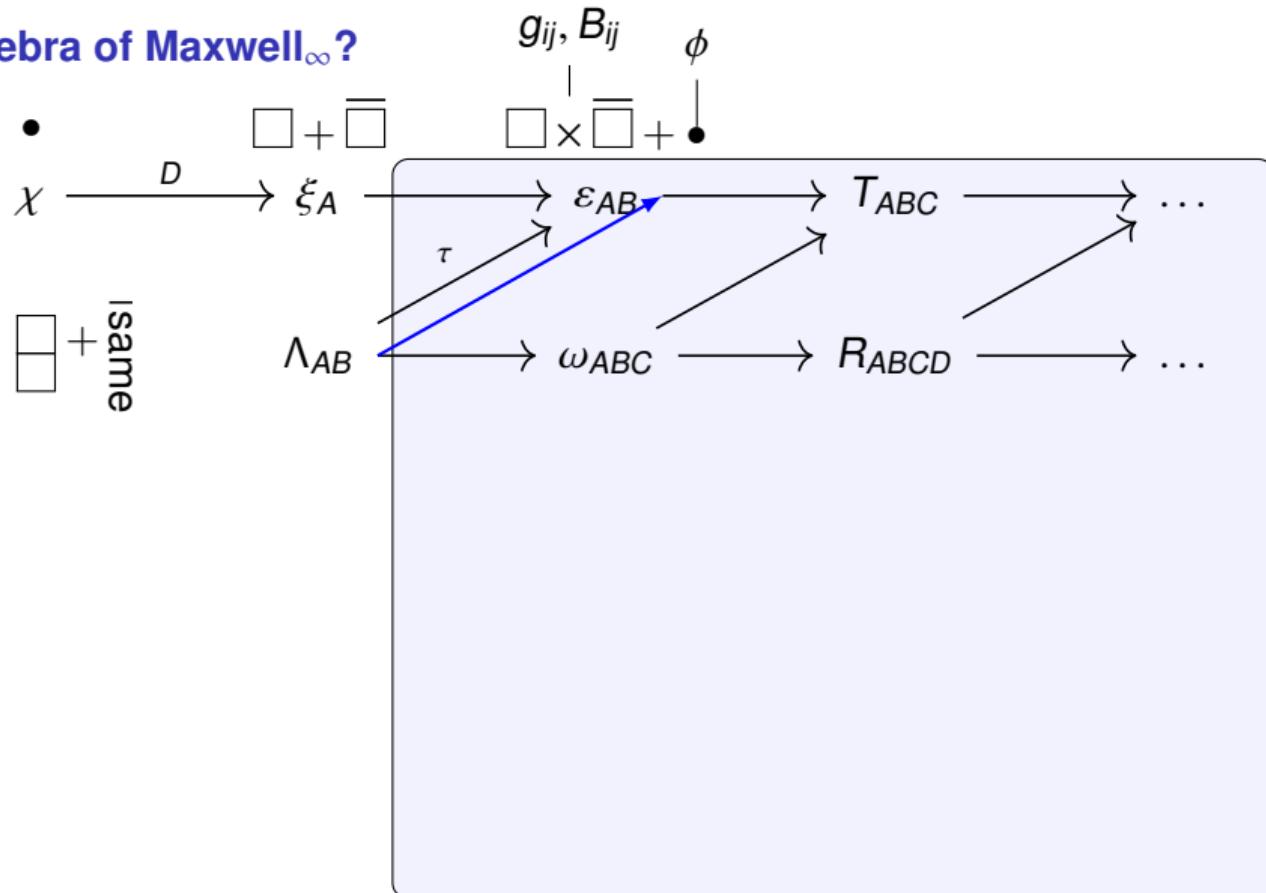
fixed by generalized Cartan geometry

Where is the subalgebra of Maxwell_{∞} ?



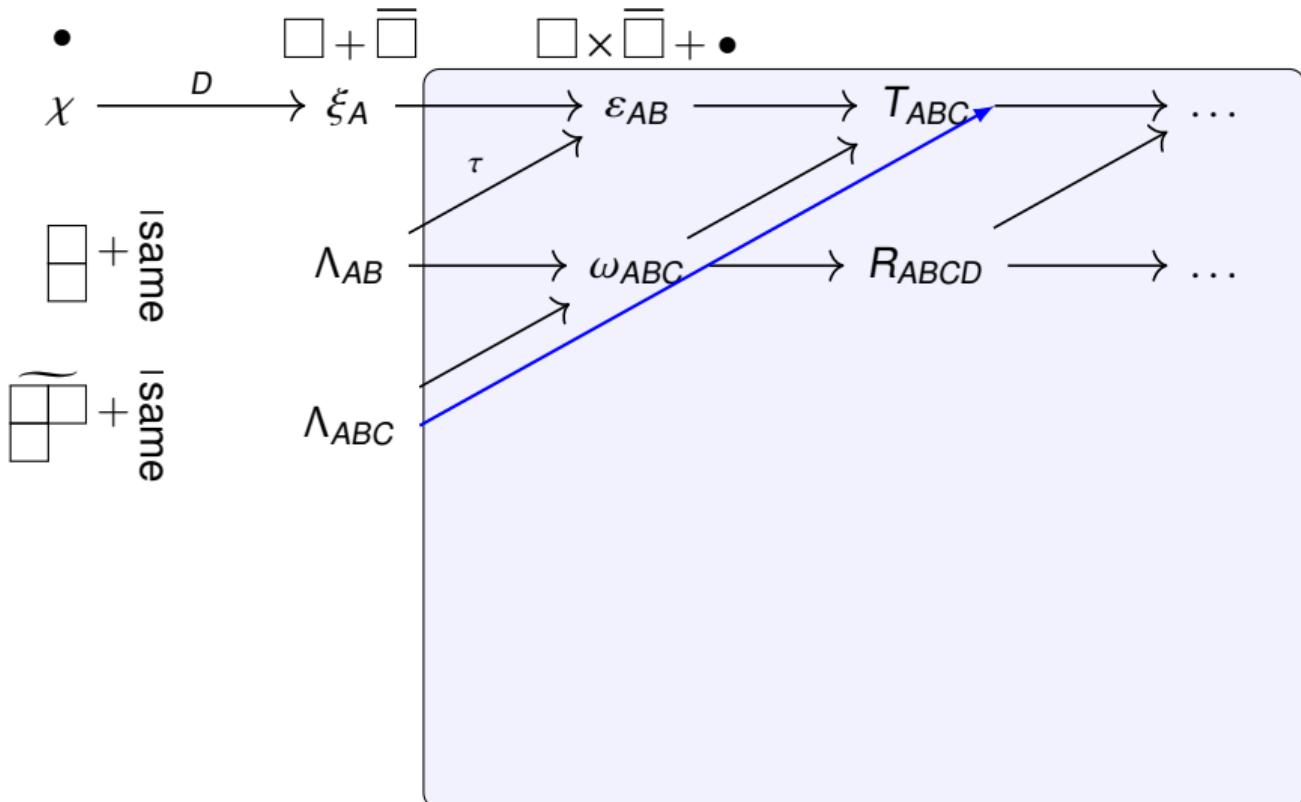
fixed by generalized Cartan geometry

Where is the subalgebra of Maxwell_{∞} ?

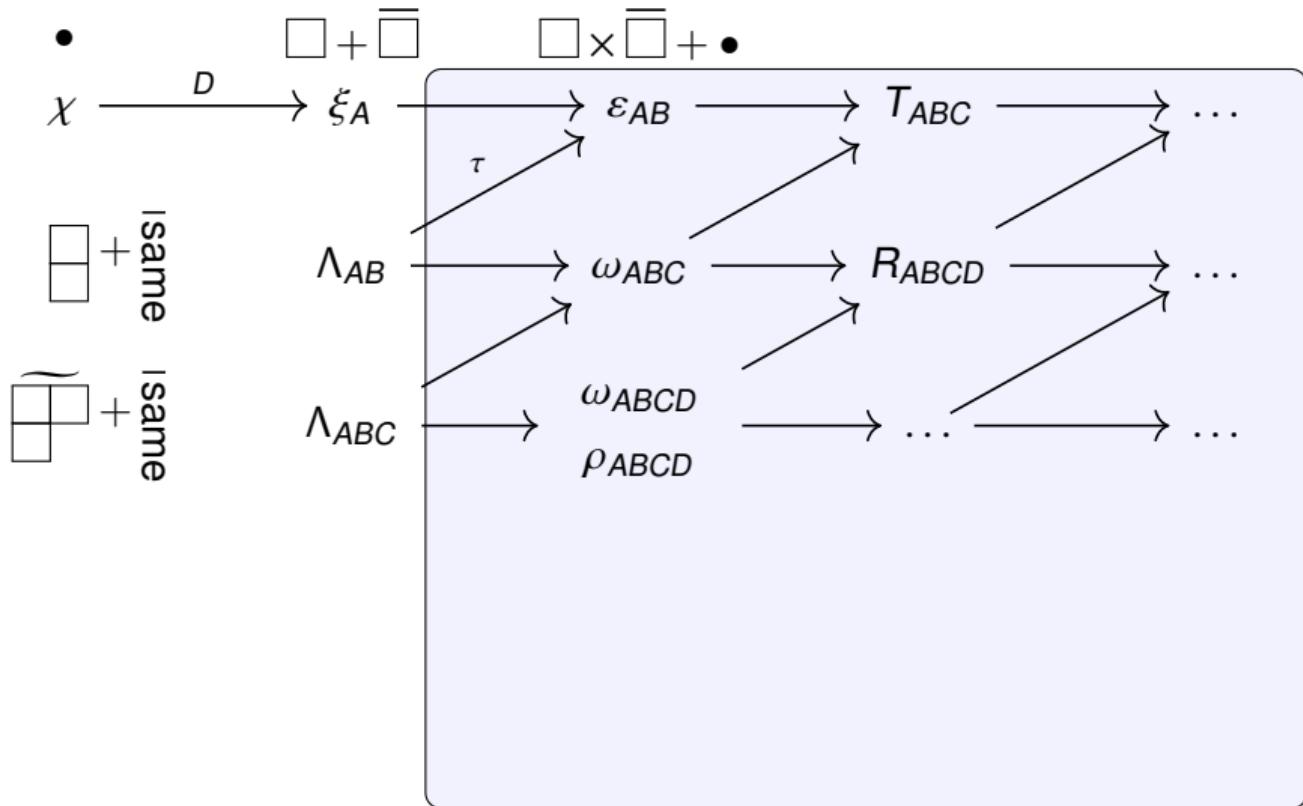


fixed by generalized Cartan geometry

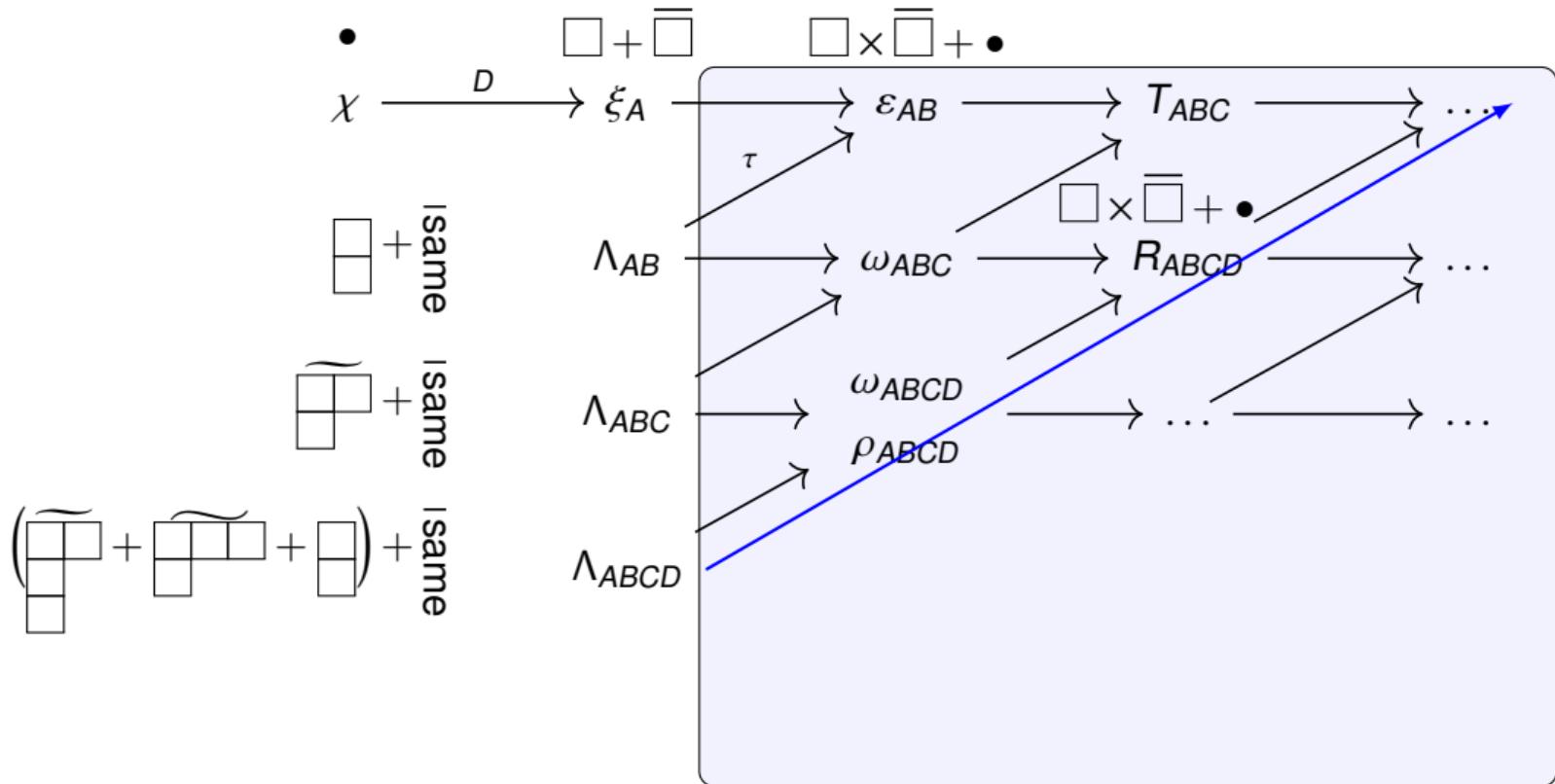
Where is the subalgebra of Maxwell_∞?



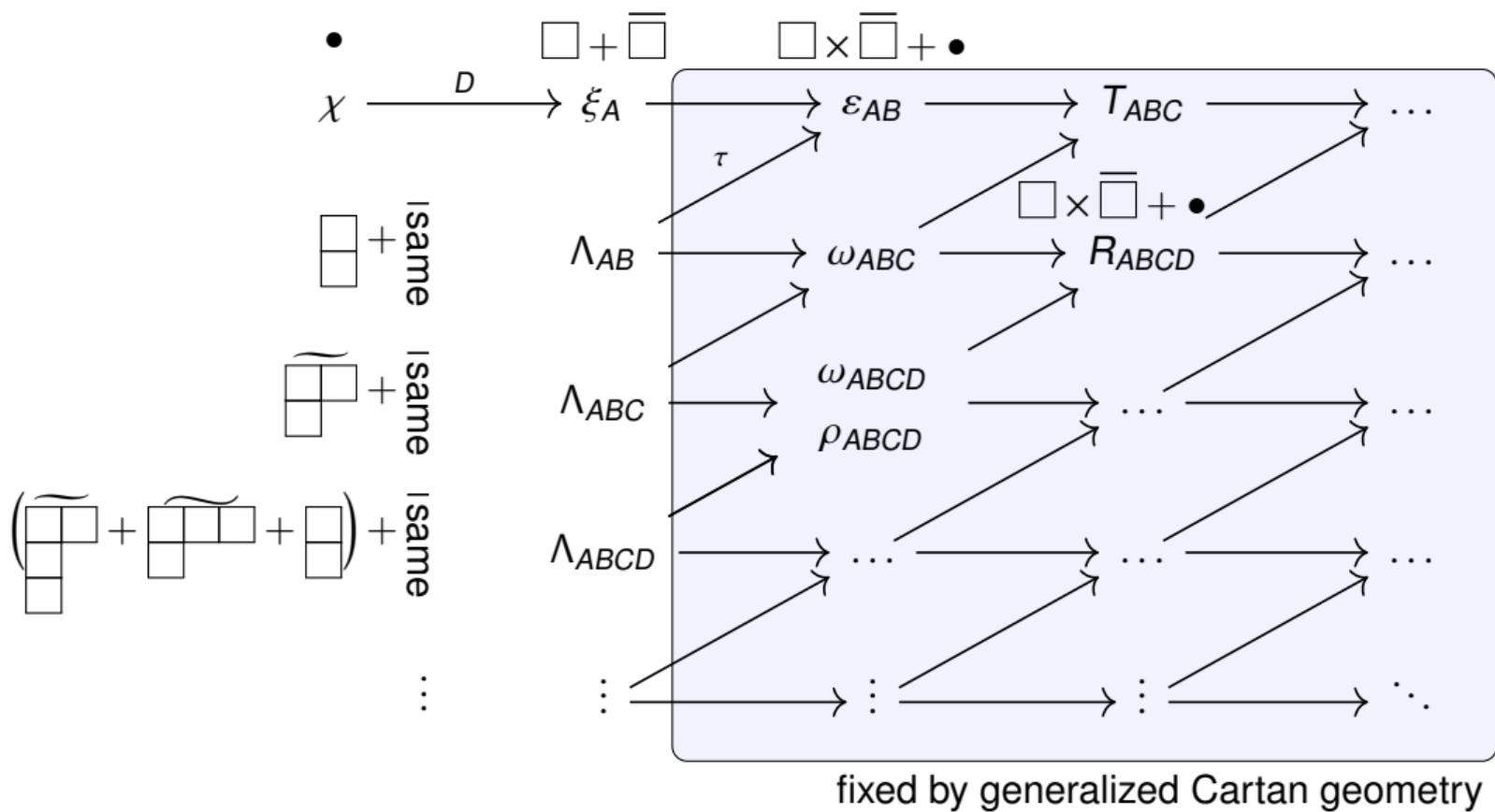
Where is the subalgebra of Maxwell_∞?



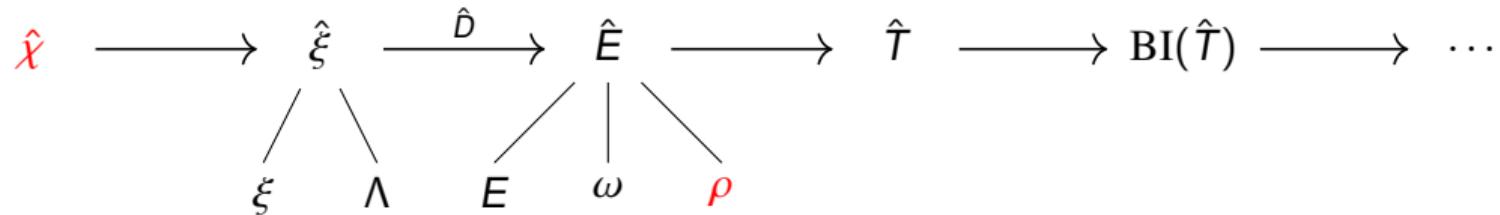
Where is the subalgebra of Maxwell_∞?



Where is the subalgebra of Maxwell_∞?

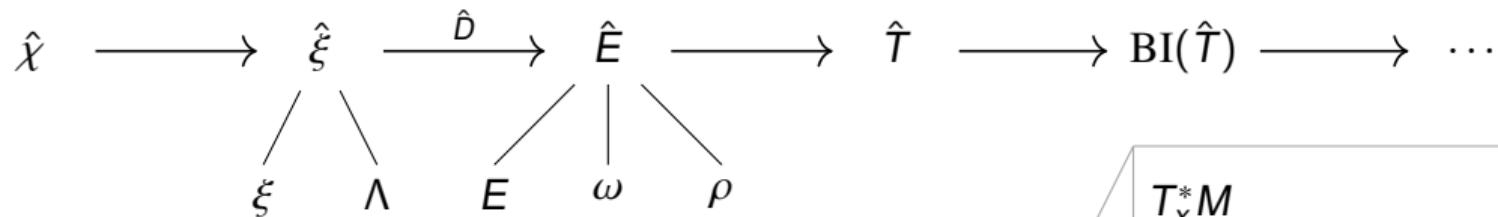


Relevant features of generalized Cartan geometry [Poláček, Siegel 13; Butter, FH, Pope, Zhang 23; FH, Hulík, Osten 24]

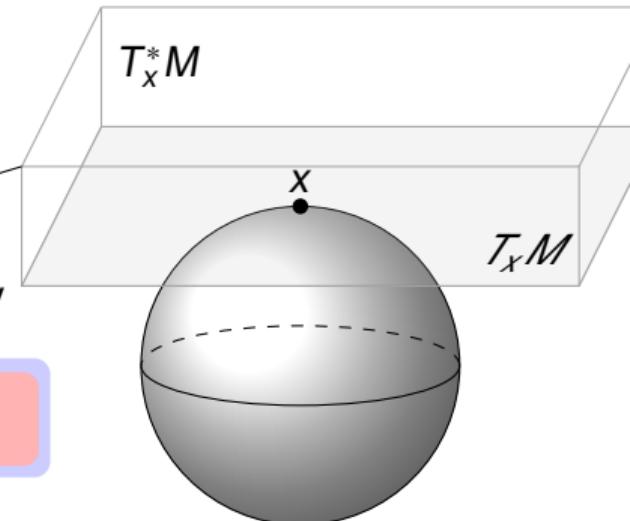


- ▶ new connection ρ with corresponding curvature

Relevant features of generalized Cartan geometry [Poláček, Siegel 13; Butter, FH, Pope, Zhang 23; FH, Hulík, Osten 24]

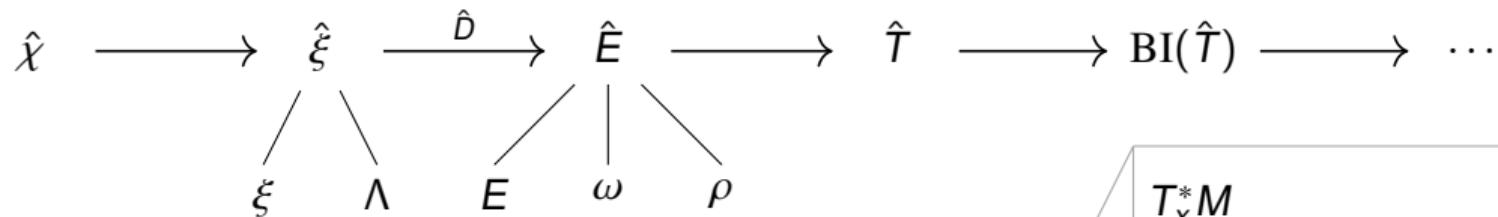


- ▶ new connection ρ with corresponding curvature
- ▶ model space is double coset $\tilde{H} \backslash G / H$ generated by

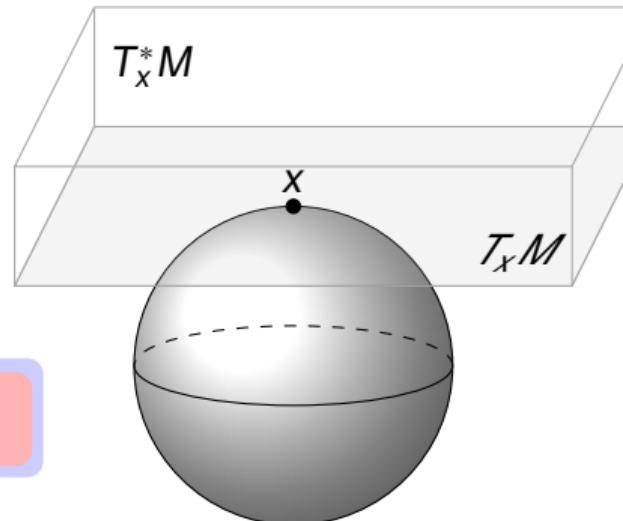


$$\dots \quad \tilde{t}^{ABC} \quad \tilde{t}^{AB} \quad P_A \quad t_{AB} \quad t_{ABC} \quad \dots$$

Relevant features of generalized Cartan geometry [Poláček, Siegel 13; Butter, FH, Pope, Zhang 23; FH, Hulík, Osten 24]

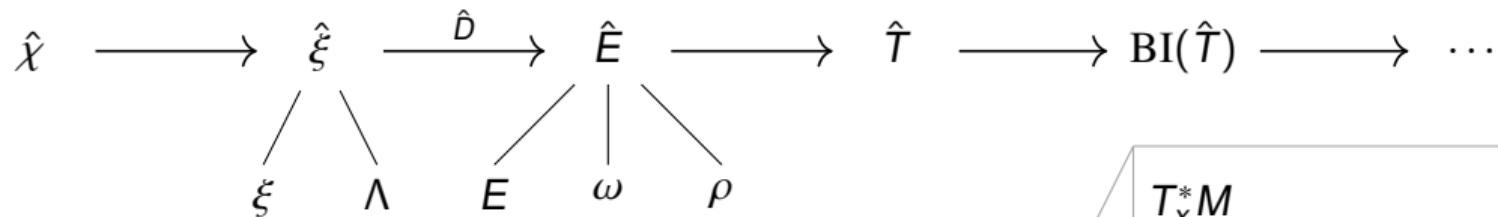


- ▶ new connection ρ with corresponding curvature
- ▶ model space is double coset $\tilde{H} \backslash G / H$ generated by

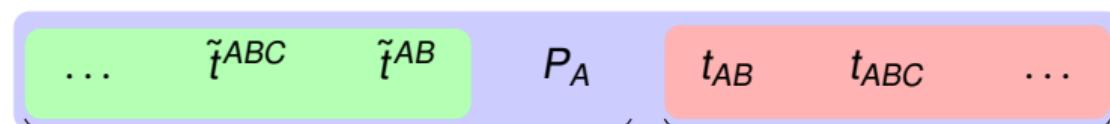


fixed by $\tau^2 = 0$ & cohomology

Relevant features of generalized Cartan geometry [Poláček, Siegel 13; Butter, FH, Pope, Zhang 23; FH, Hulík, Osten 24]



- ▶ new connection ρ with corresponding curvature
- ▶ model space is double coset $\tilde{H} \backslash G / H$ generated by



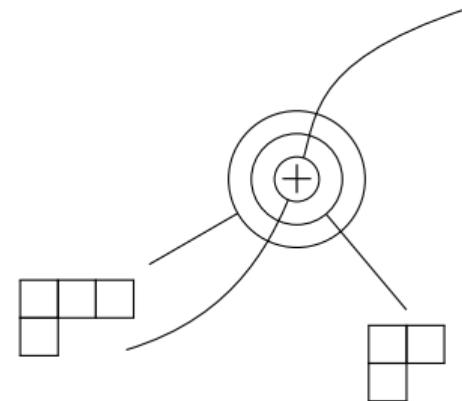
fixed by $\tau^2 = 0$ & cohomology

- ▶ specified by a symmetric, invariant bilinear form κ on $\text{Lie}(H)$



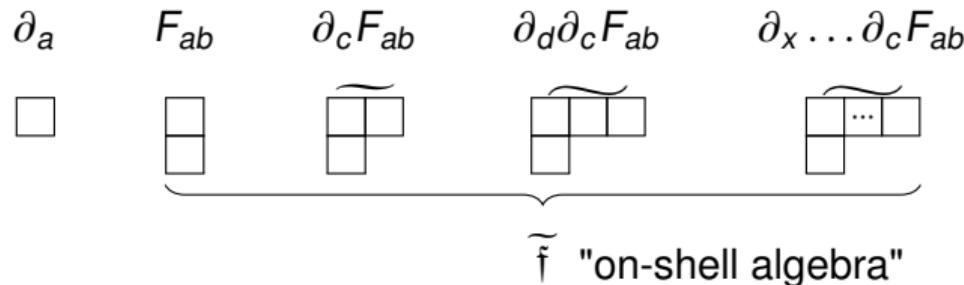
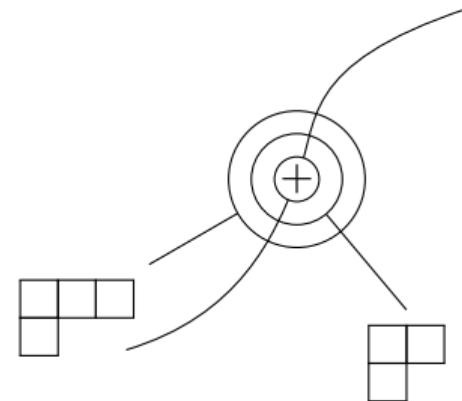
The point particle on steroids

- ▶ we already know the algebra

 ∂_a F_{ab} $\partial_c F_{ab}$ $\partial_d \partial_c F_{ab}$ $\partial_x \dots \partial_c F_{ab}$ 

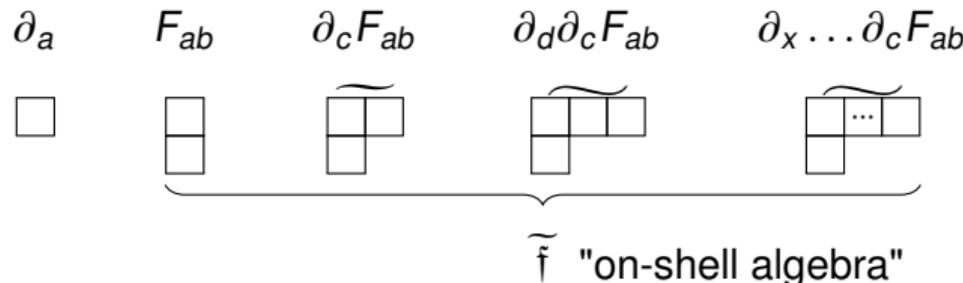
The point particle on steroids

- ▶ we already know the algebra



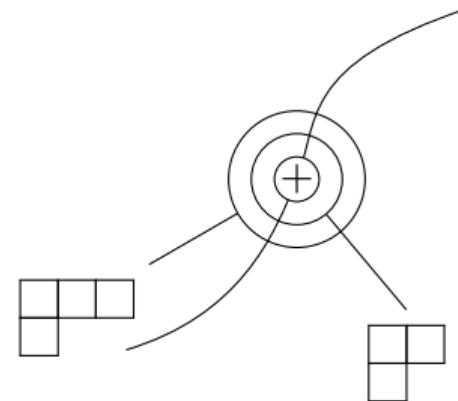
The point particle on steroids

- ▶ we already know the algebra



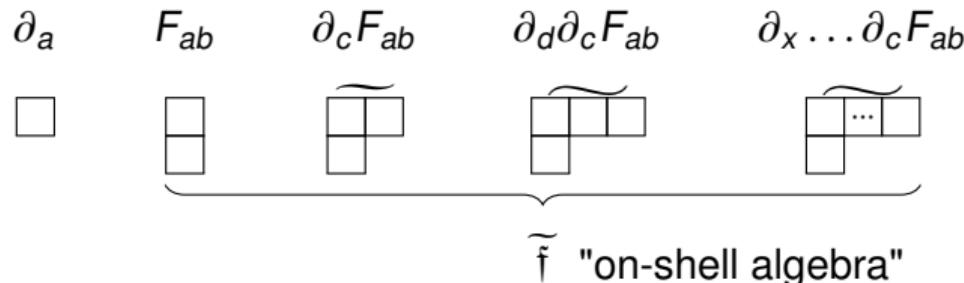
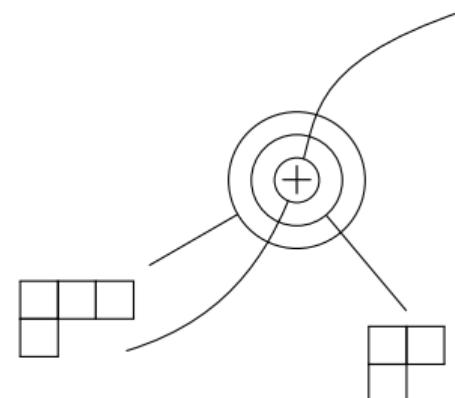
- ▶ $\text{Lie}(\tilde{H})$ is the free Lie algebra generated by \tilde{f}

$\dots \tilde{t}^{ABC} \tilde{t}^{AB} P_A t_{AB} t_{ABC} \dots$



The point particle on steroids

- we already know the algebra



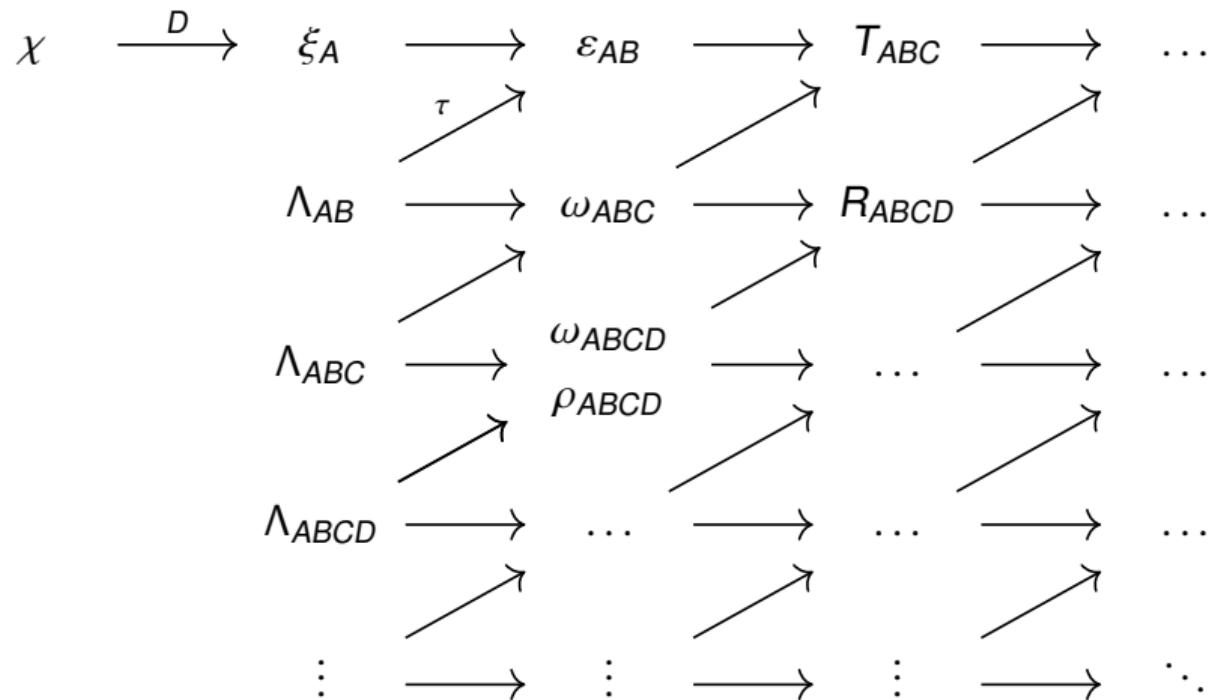
- $\text{Lie}(\tilde{H})$ is the free Lie algebra generated by $\tilde{\mathfrak{f}}$

- introduce $t_{\hat{A}} = (\tilde{t}^\alpha \quad P_A \quad t_\alpha)$ with $[t_{\hat{A}}, t_{\hat{B}}] = f_{\hat{A}\hat{B}}{}^{\hat{C}} t_{\hat{C}}$
- define $S = \frac{1}{6} f_{\hat{A}\hat{B}\hat{C}} \theta^{\hat{A}} \theta^{\hat{B}} \theta^{\hat{C}}$, and $\{\theta^{\hat{A}}, \theta^{\hat{B}}\} = \eta^{\hat{A}\hat{B}}$
- solve $\{S, S\} = 0$ (linear order by order)

$$\eta_{\hat{A}\hat{B}} = \begin{pmatrix} 0 & 0 & \delta_\beta^\alpha \\ 0 & \eta_{AB} & 0 \\ \delta_\alpha^\beta & 0 & -\kappa_{\alpha\beta} \end{pmatrix}$$

$$\eta^{\hat{A}\hat{B}} = \begin{pmatrix} \kappa_{\alpha\beta} & 0 & \delta_\alpha^\beta \\ 0 & \eta^{AB} & 0 \\ \delta_\beta^\alpha & 0 & 0 \end{pmatrix}$$

A tower of corrections



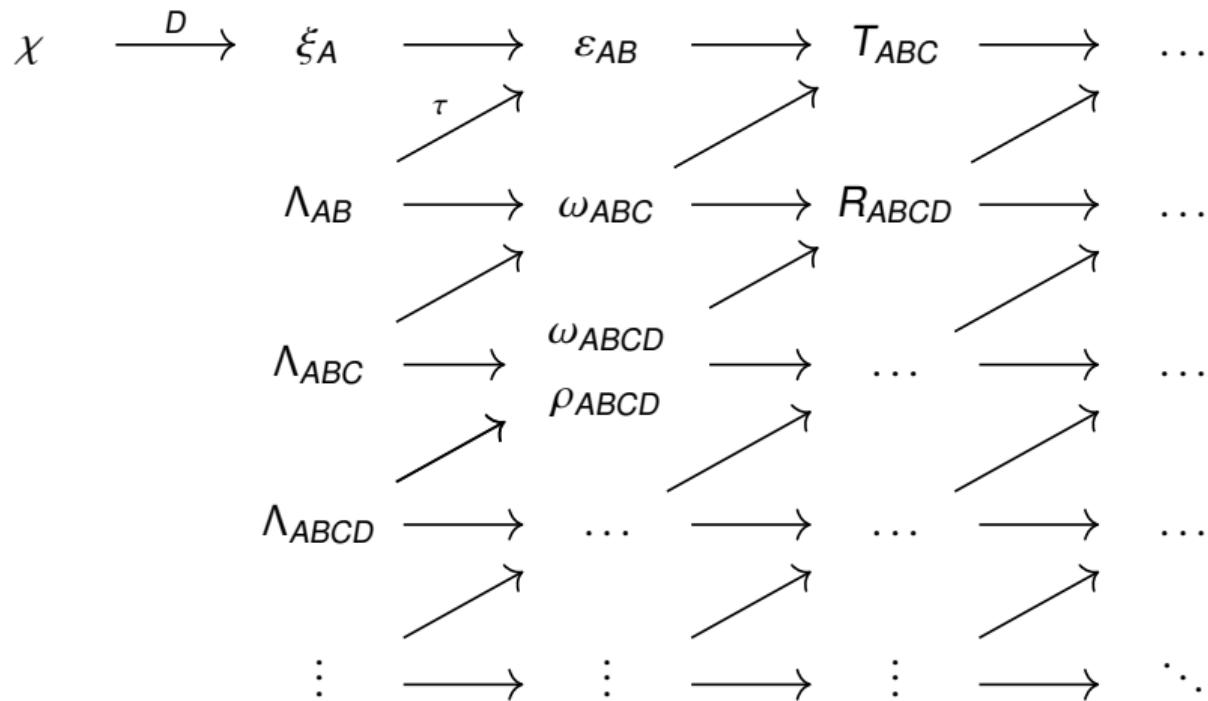
A tower of corrections

$$\Lambda^{i-2} = \Lambda^{A_1 \dots A_i} t_{A_1 \dots A_i}$$

$$\omega_A^{i-2} = \omega_A^{B_1 \dots B_i} t_{B_1 \dots B_i}$$

⋮

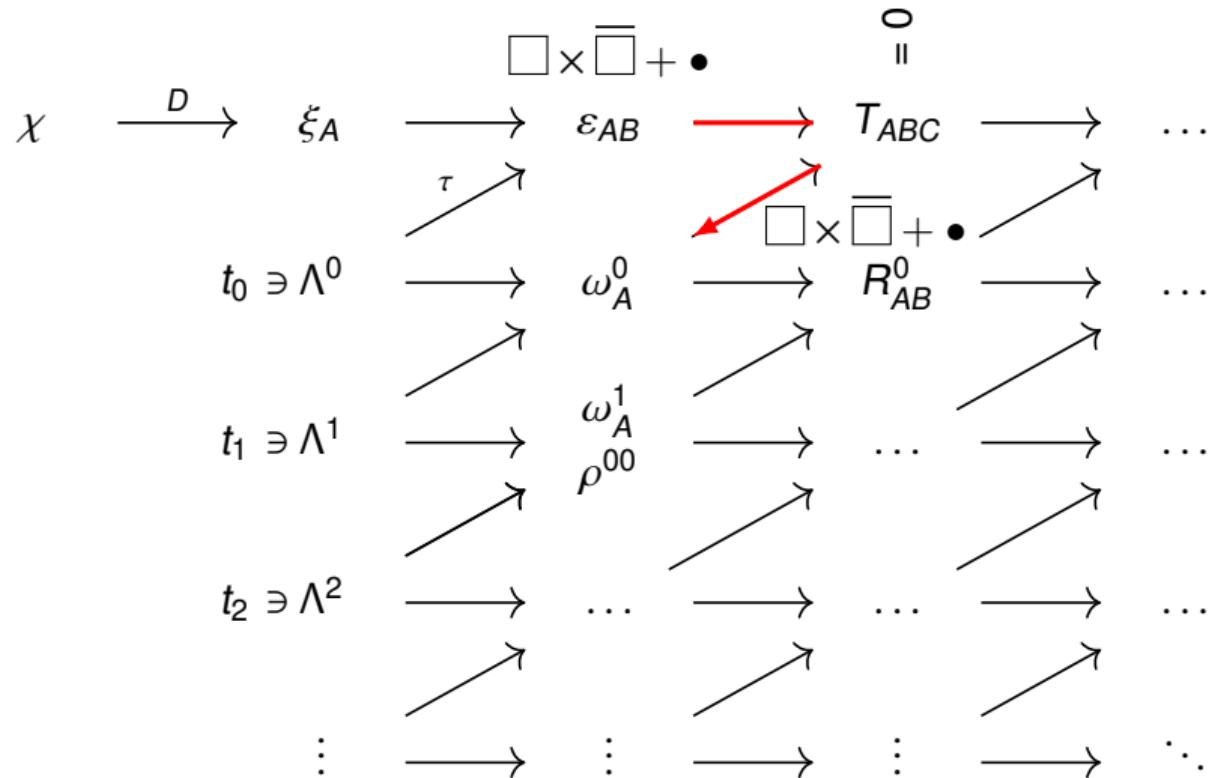
$$\rho^{i-2j-2} = \frac{1}{2} \rho^{A_1 \dots A_i B_1 \dots B_j} t_{A_1 \dots A_i} \wedge t_{B_1 \dots B_j}$$



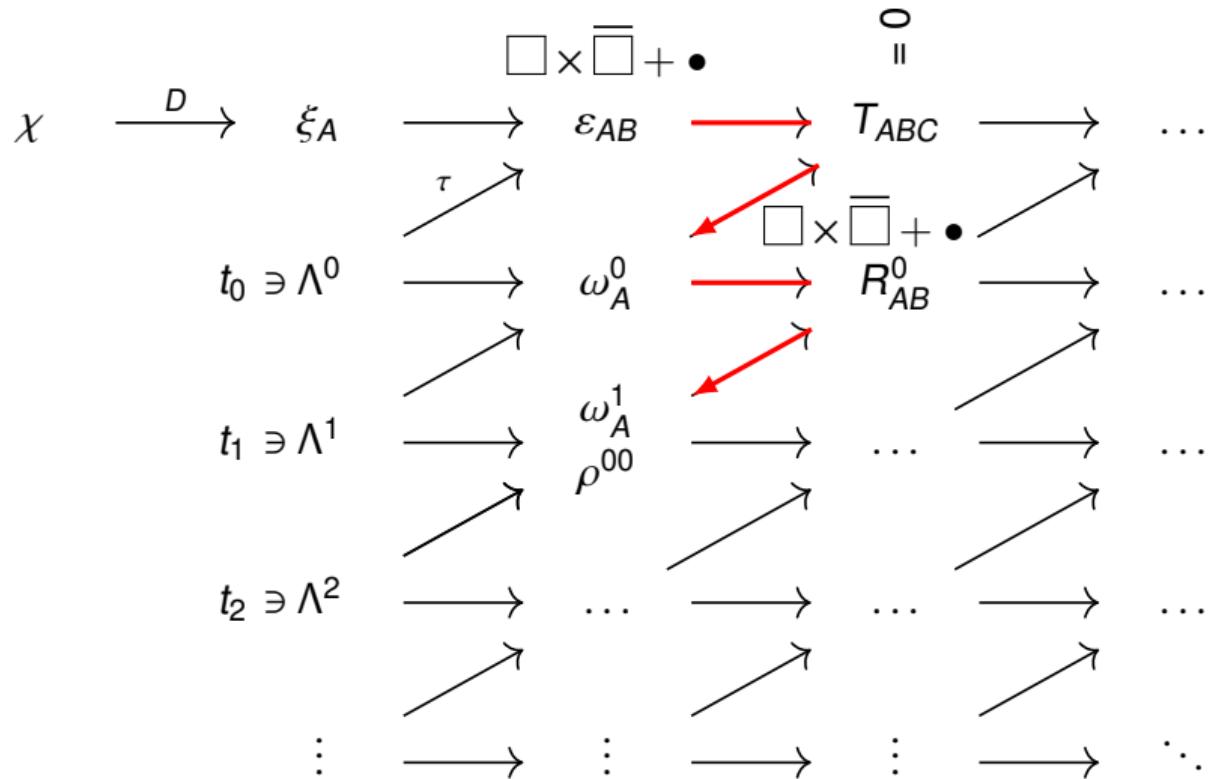
A tower of corrections

$$\begin{array}{ccccccc}
\chi & \xrightarrow{D} & \xi_A & \longrightarrow & \varepsilon_{AB} & \longrightarrow & T_{ABC} \longrightarrow \dots \\
& & \tau \nearrow & & \nearrow & & \nearrow \\
t_0 \ni \Lambda^0 & \longrightarrow & \omega_A^0 & \longrightarrow & R_{AB}^0 & \longrightarrow \dots \\
& \nearrow & & \nearrow & & \nearrow \\
\Lambda^{i-2} = \Lambda^{A_1 \dots A_i} t_{A_1 \dots A_i} & & t_1 \ni \Lambda^1 & \longrightarrow & \omega_A^1 & \longrightarrow \dots & \dots \\
& & \nearrow & & \nearrow & & \nearrow \\
\omega_A^{i-2} = \omega_A^{B_1 \dots B_i} t_{B_1 \dots B_i} & & t_2 \ni \Lambda^2 & \longrightarrow & \rho^{00} & \longrightarrow \dots & \dots \\
& & \nearrow & & \nearrow & & \nearrow \\
& \vdots & \vdots & \longrightarrow & \vdots & \longrightarrow & \vdots \\
& & & \vdots & & \vdots & \vdots \\
\rho^{i-2j-2} = \frac{1}{2} \rho^{A_1 \dots A_i B_1 \dots B_j} t_{A_1 \dots A_i} \wedge t_{B_1 \dots B_j} & & & & & & \dots
\end{array}$$

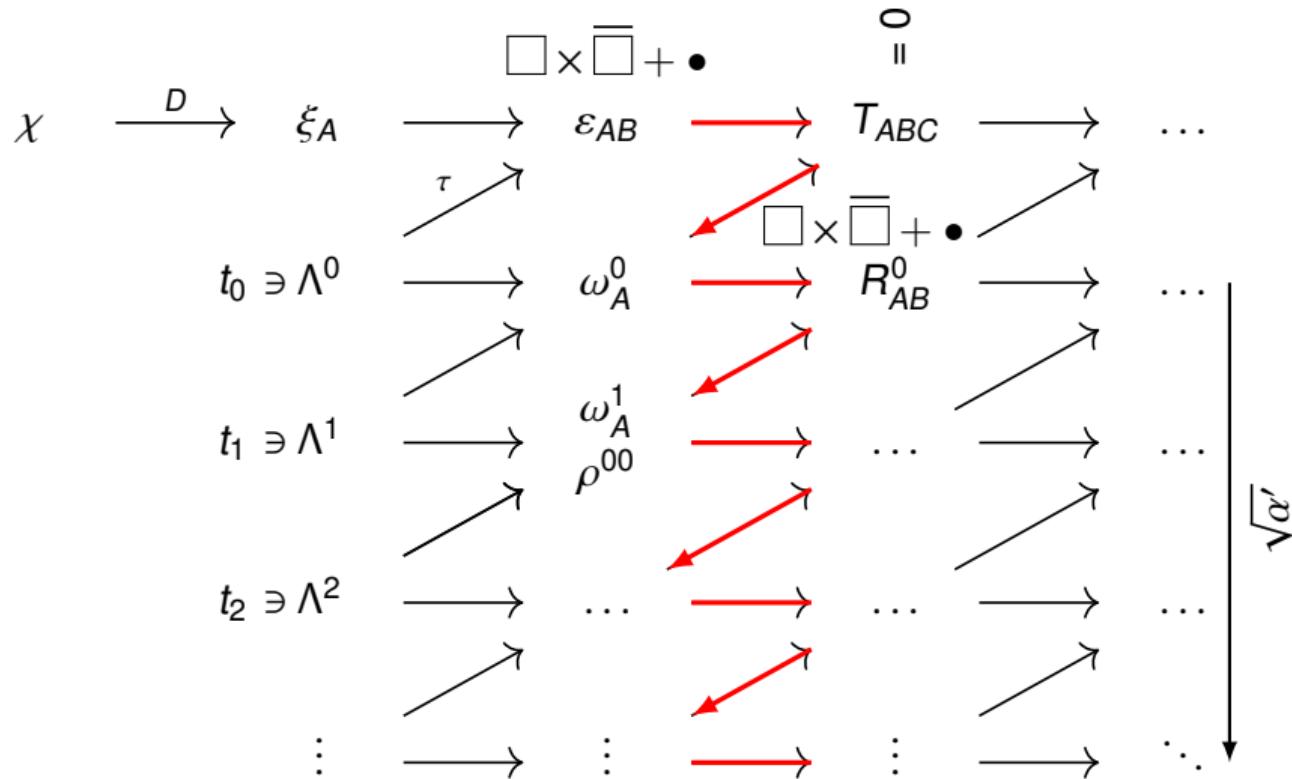
A tower of corrections



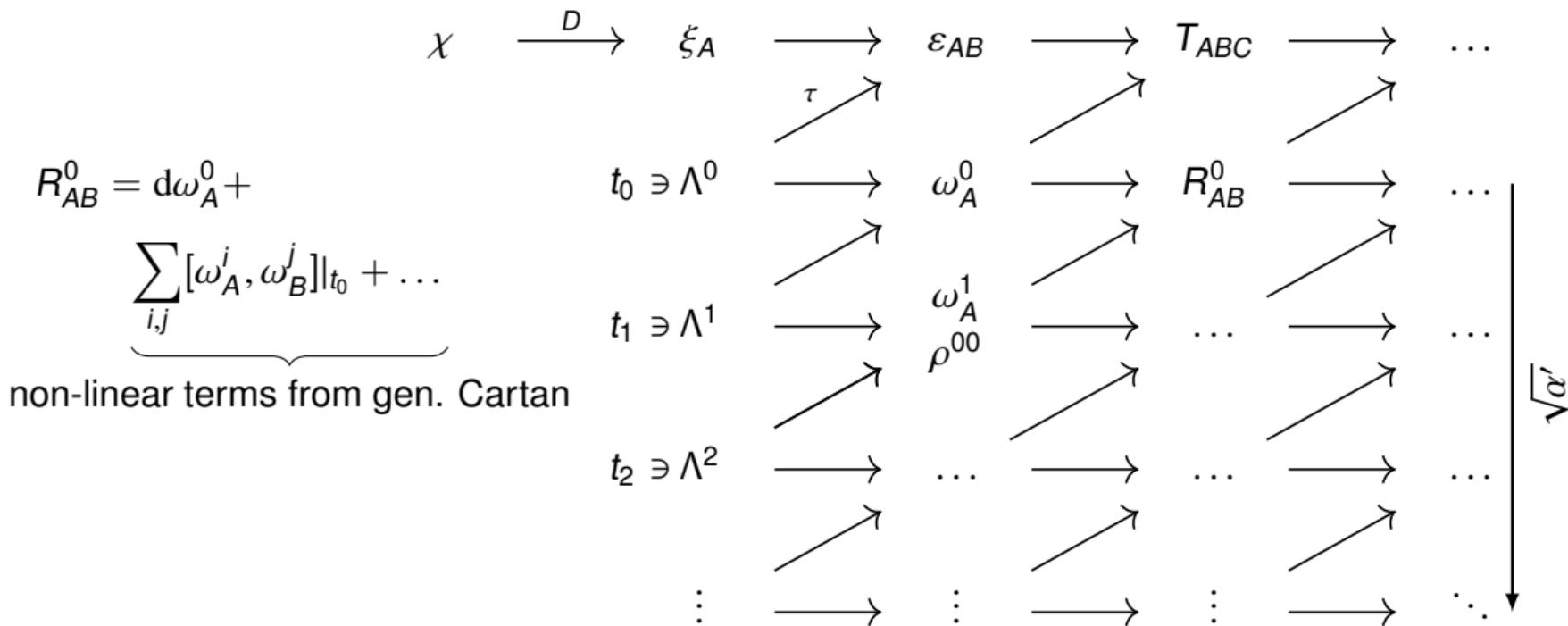
A tower of corrections



A tower of corrections



A tower of corrections



A tower of corrections

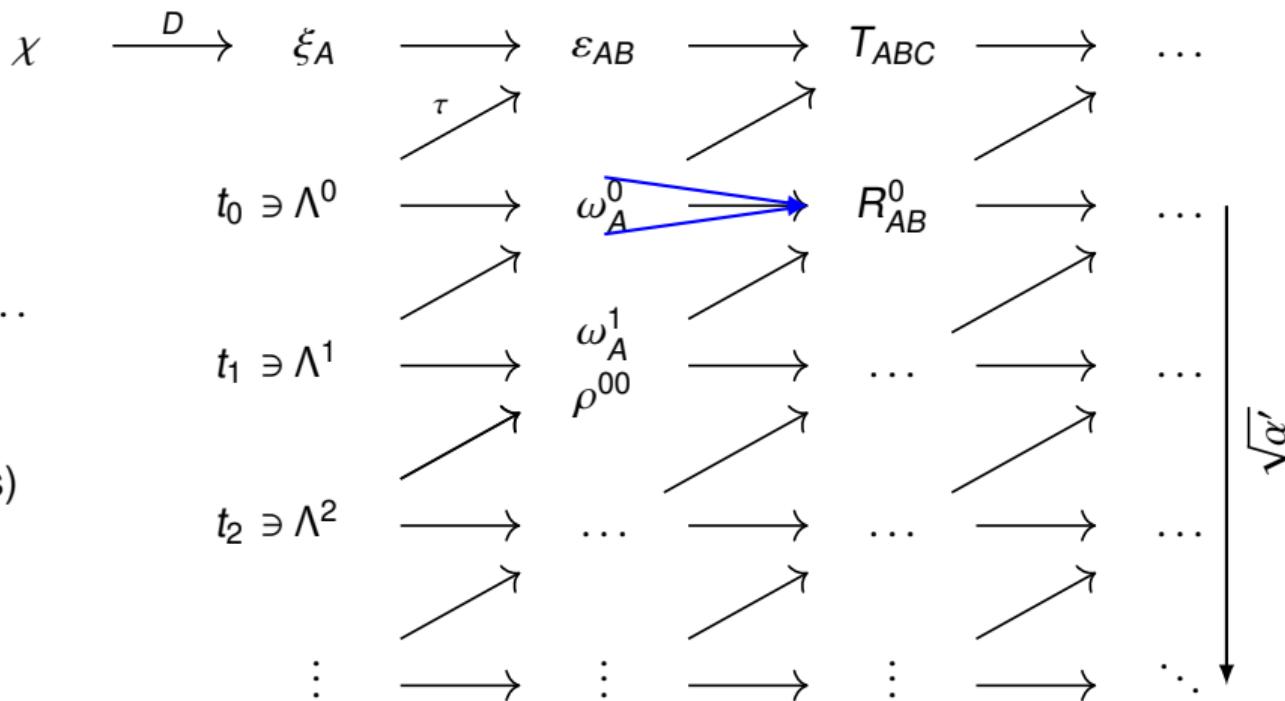
$$R_{AB}^0 = d\omega_A^0 +$$

$$\sum_{i,j} [\omega_A^i, \omega_B^j]|_{t_0} + \dots$$

H is graded (κ vanishes)

$$[t_i, t_j] \subset t_{i+j}$$

no α' -corrections



A tower of corrections

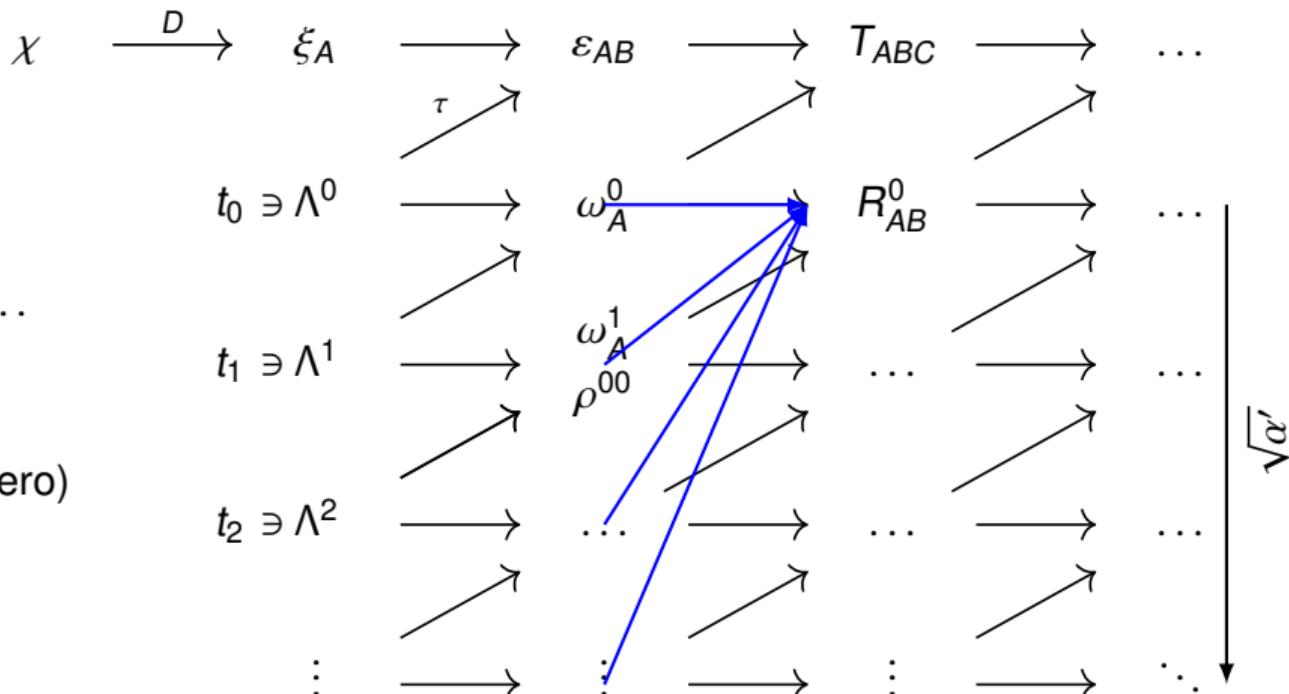
$$R_{AB}^0 = d\omega_A^0 +$$

$$\sum_{i,j} [\omega_A^i, \omega_B^j]|_{t_0} + \dots$$

H is a filtration (κ non-zero)

$$[t_i, t_j] \subset \bigcup_{k \leq i+j} t_k$$

a tower of α' -corrections arises



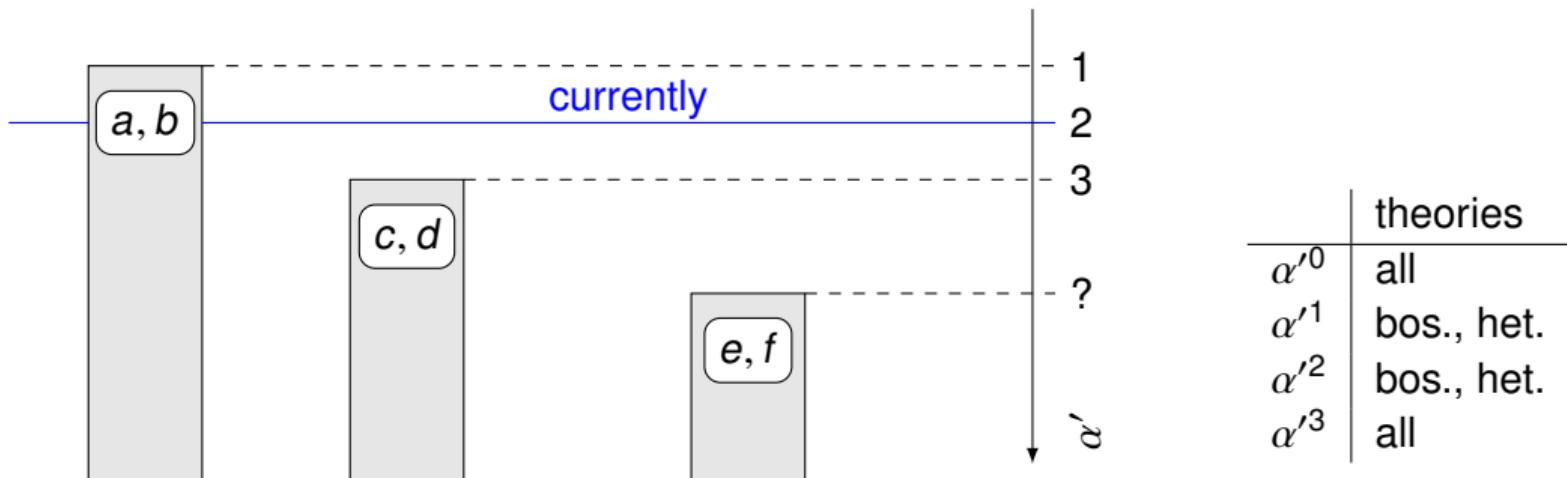
A skyline and an evaded no-go theorem

- admissible κ 's are parameterized by $\kappa = \kappa(\underline{a}, b, c, d, e, f, \dots)$

have to be there [Achilleas Gitsis, FH 24]

A skyline and an evaded no-go theorem

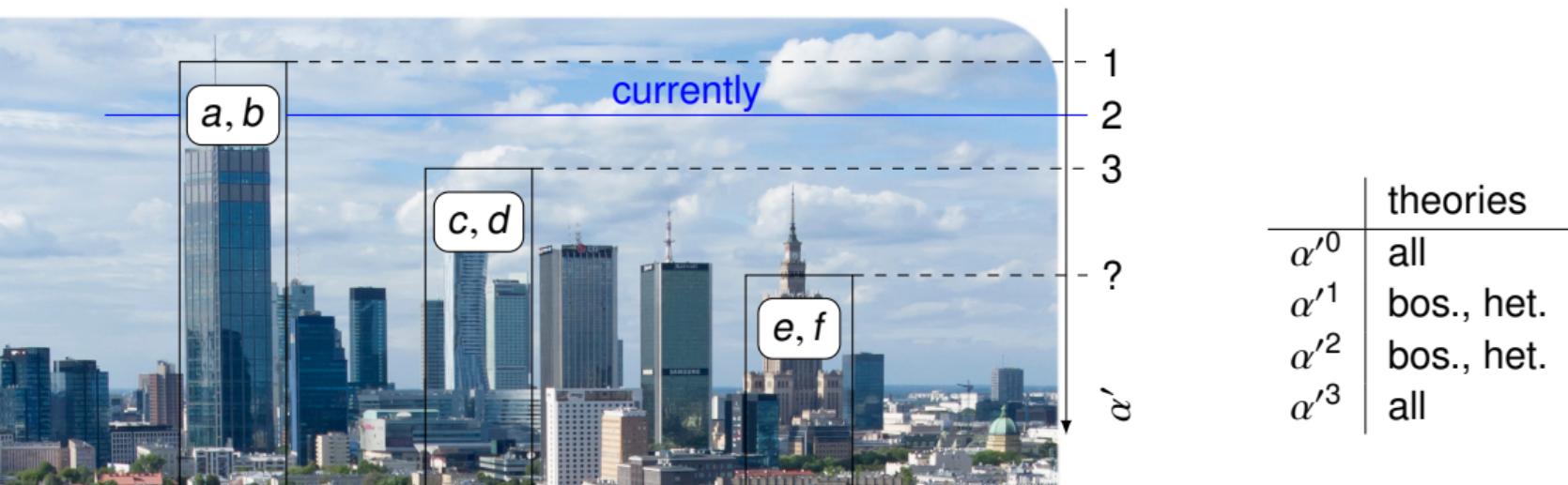
- ▶ admissible κ 's are parameterized by $\kappa = \kappa(\underline{a}, \underline{b}, c, d, e, f, \dots)$
- ▶ each parameter creates a tower of α' -corrections



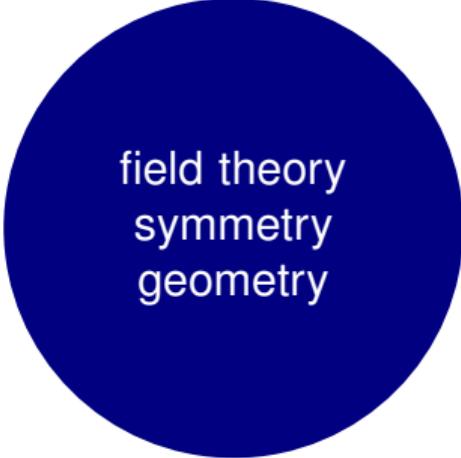
A skyline and an evaded no-go theorem

- ▶ admissible κ 's are parameterized by $\kappa = \kappa(\underline{a, b}, c, d, e, f, \dots)$
- ▶ each parameter creates a tower of α' -corrections
- ▶ no-go for α'^3 -tower from deformed $O(d) \times O(d)$ symmetry [\[Hsia, Kamal, Wulff 24\]](#)

No problem, we don't need this symmetry!

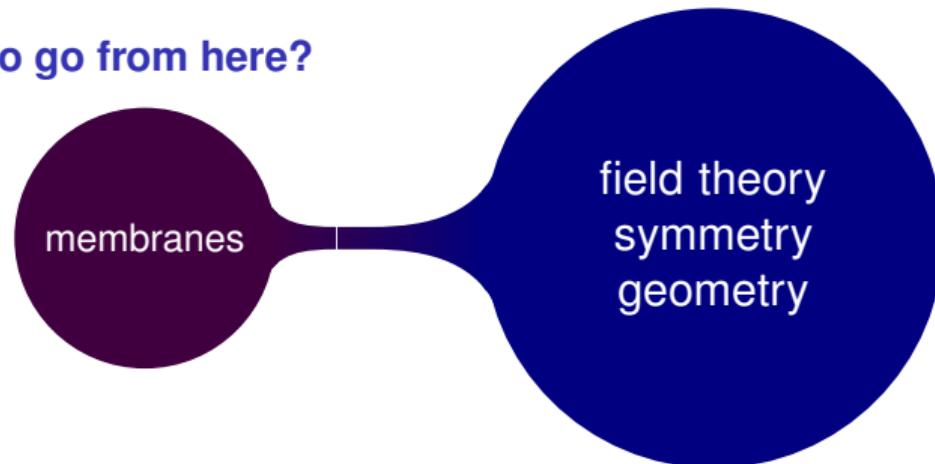


Where to go from here?

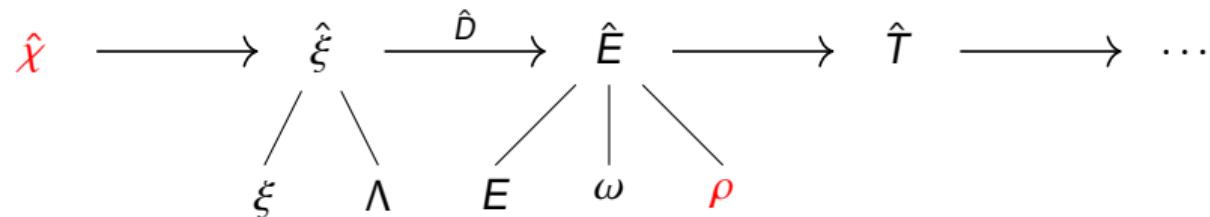


field theory
symmetry
geometry

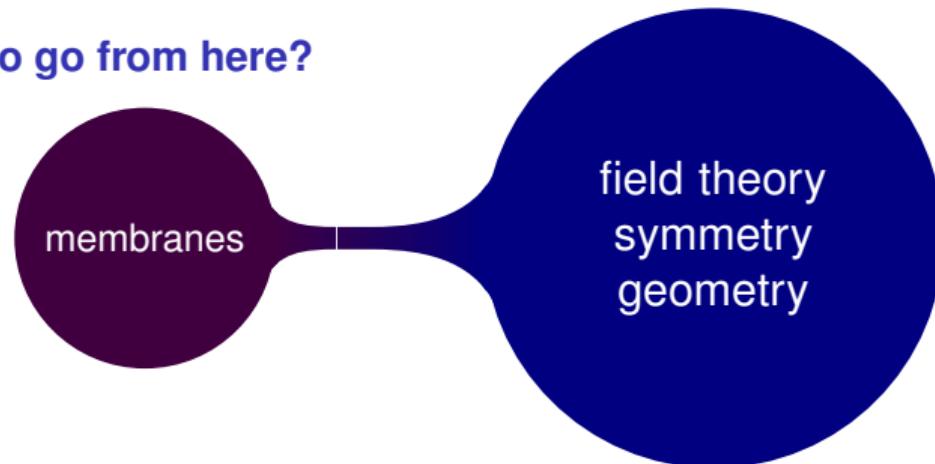
Where to go from here?



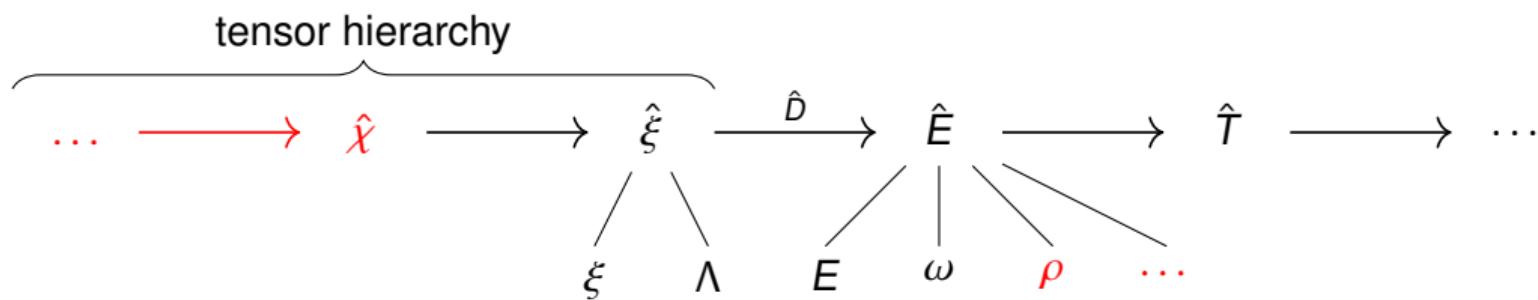
generalized Cartan geometry:



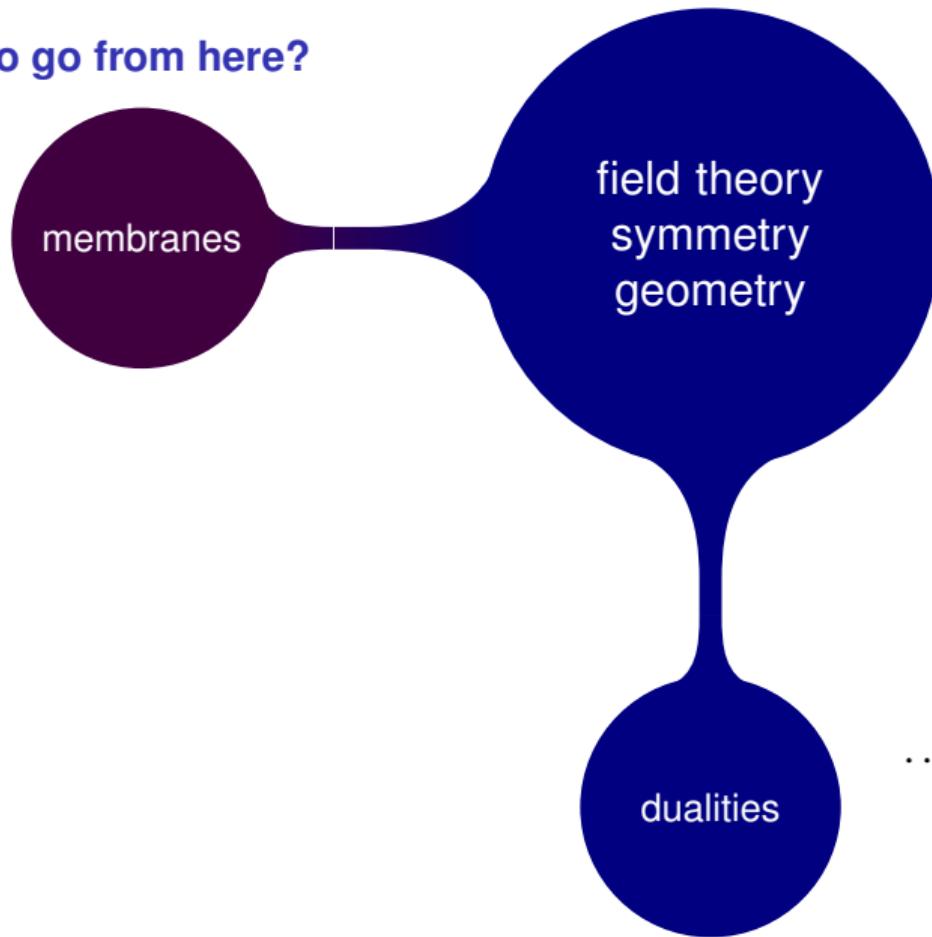
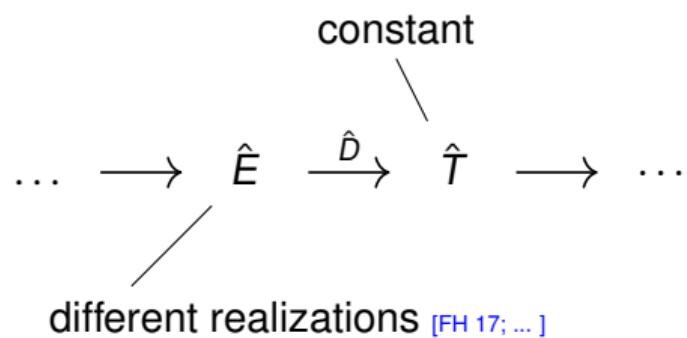
Where to go from here?



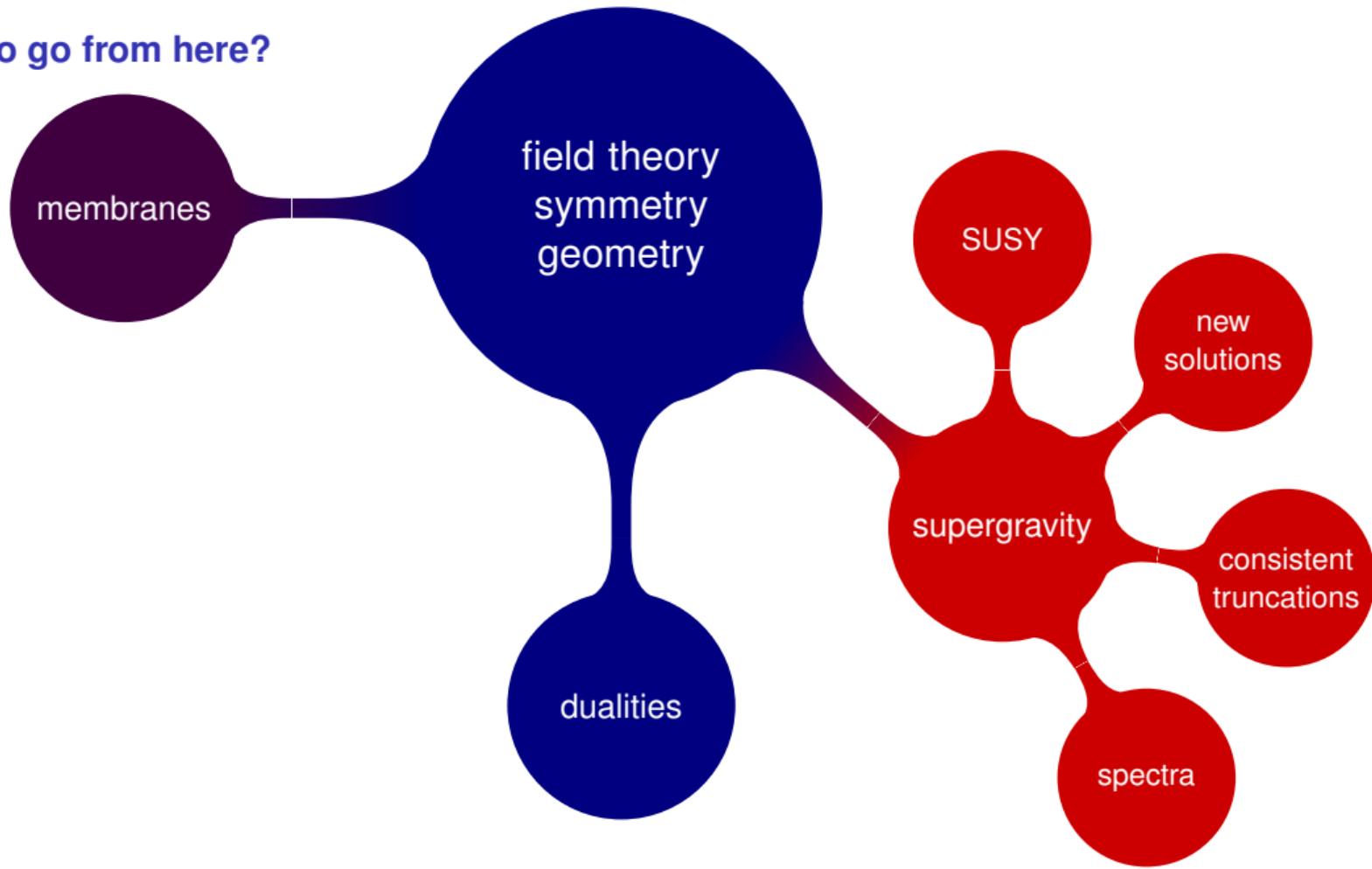
exceptional Cartan geometry: [FH, Yuho Sakatani 23]



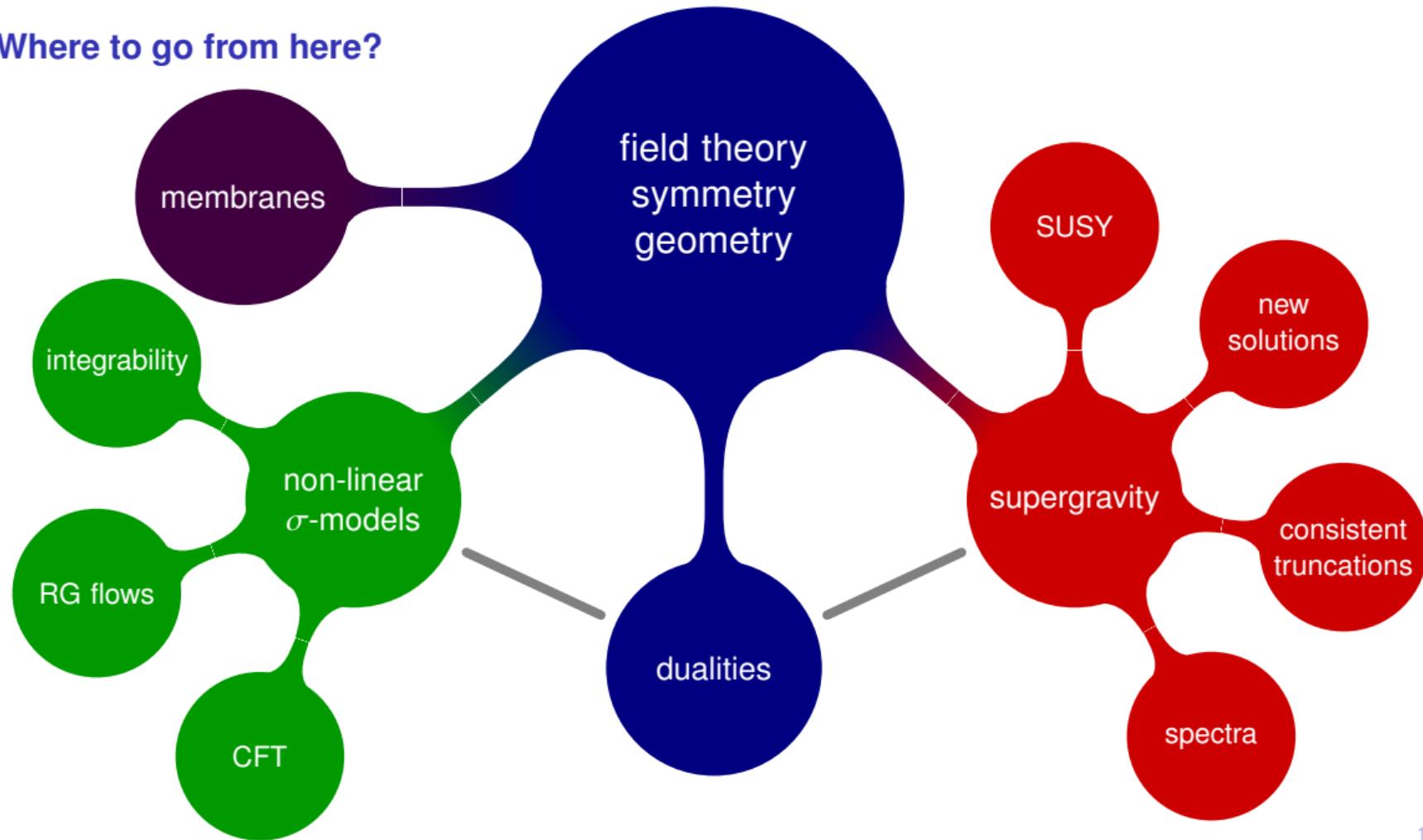
Where to go from here?



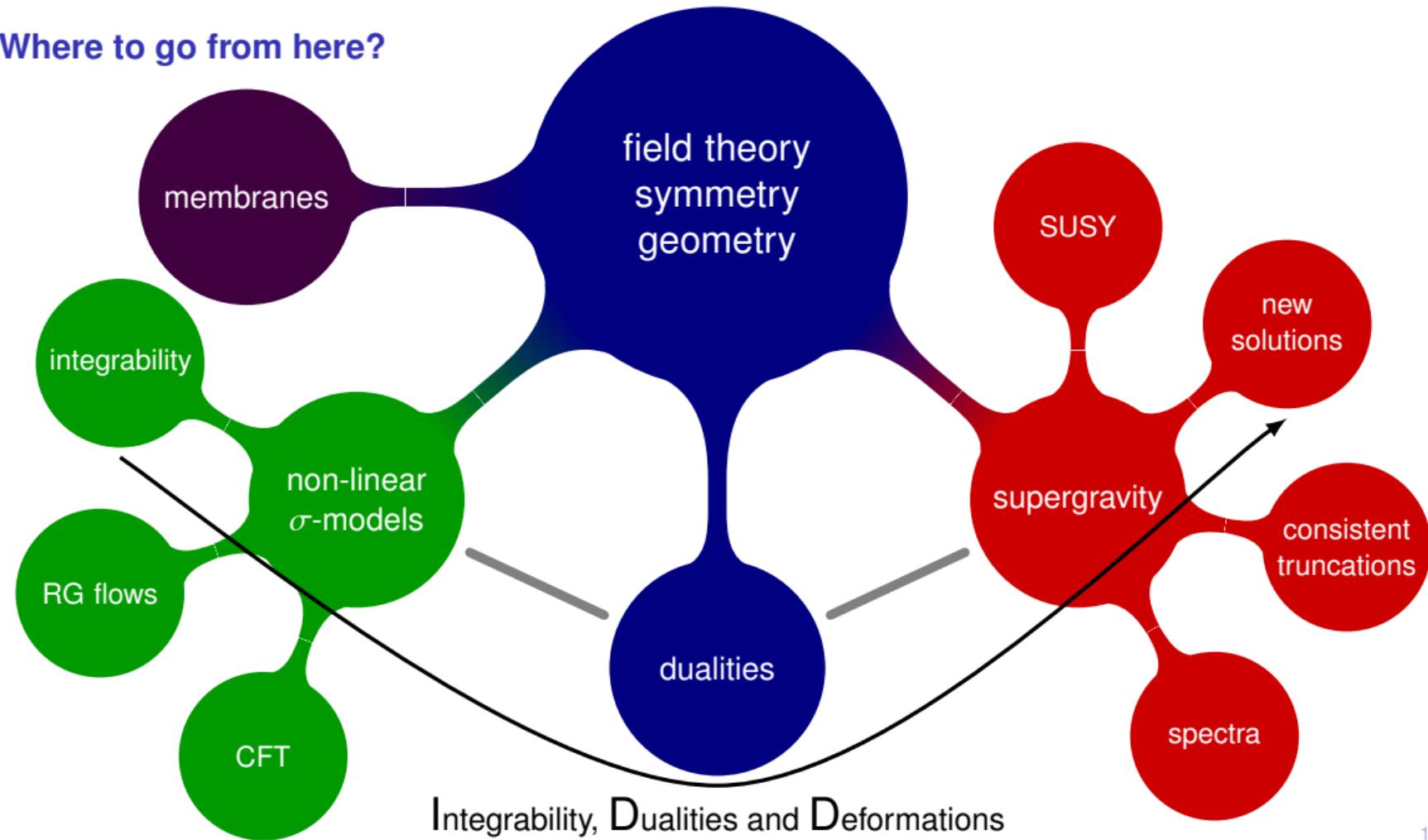
Where to go from here?

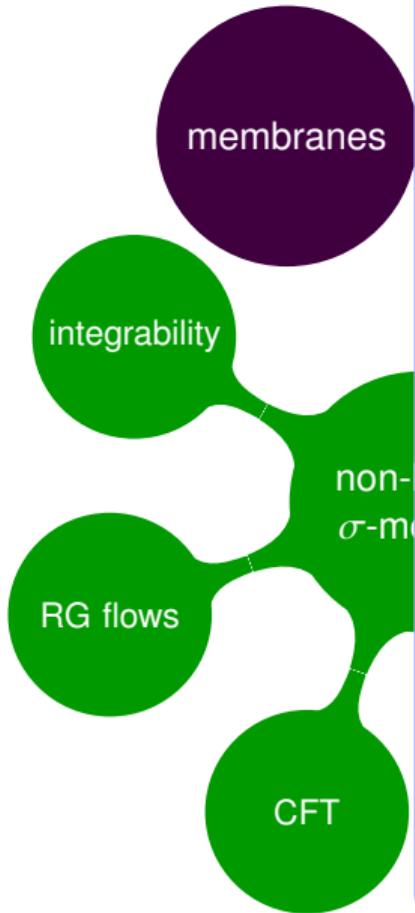


Where to go from here?



Where to go from here?



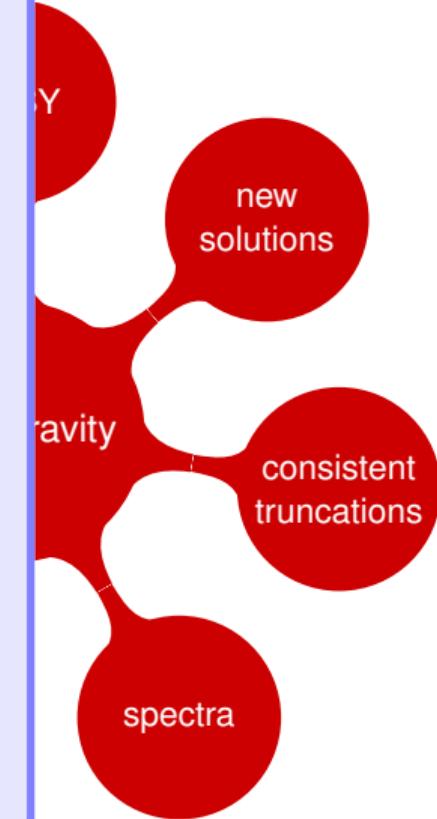


Integrability, Dualities and Deformations 2025

@ NORDITA (Stockholm, Sweden)

- ▶ 08.09-12.09.2025 workshop
- ▶ 15.09-19.09.2025 conference

<https://indico.fysik.su.se/event/8807>



Where to go from here?

