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String amplitudes, Effective Field Theory and gravity
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String amplitudes, Effective Field Theory and gravity
1. select relevant degrees of freedom (9i» Bjj» ¢)

2. identify their symmetries

» diffeomorphisms, and

> Abelian gauge transformations
3. expand action by writing all terms allowed by symmetries (@)
Rix', Hik = 30|iBjy. ®, \/ building blocks
4. fix their coefficients my matching the amplitudes
2n

S = m ded \/—ge_2¢ [R + 4V,¢V’¢ + .I‘I—ZH,IKHUK + Cl/(. . ) +.. ]
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Challenges

» explosion of terms > string loop corrections (gs = €?)

| coeff. | theories
013 all

(04

o] 8 bos., het.
a? | 60 bos., het.
a® | 872 all

Expansion in o’ and g;! We know only

> leading orders in supergravity

> thanks to holography a bit more

How to go beyond?
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1. select relevant degrees of freeq
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Idea: spontaneously broken symmetries

1. select relevant degrees of free
. > fermionic
2. identify their symmetries’
y y \ > hidd
3. ... > spontaneously broken

Coset construction (non-linear realization)

> @G = the full symmetry group

» H = residual symmetries after spontaneous breaking Lagrangian

» introduce Mauer-Cartan form Q = g~'dg for g € G/H L =L(Q2D,)

> expand it in broken generators t, as Q = Q%t, + ...
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v

G is the Poincaré group

v

H is the Lorentz group

v

coset representative g = e**Fa
Q=g 'dg = QP,

Q% = x%dr

algebra

v

invariant Lagrangian

P, translations
= —(0a
Mg, Lorentz transformations L = my-Q2Q,
results in field equations

v

mx? =0

[Pa, Pp] =0
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Example: charged particle in an electromagnetic field

v

G is the Maxwell group (setrader 72]

v

H is the Lorentz group

v

ap.  lpa
coset representative g = e*'Pag2’ *Zab
Q=g ldg=Q%Ps + ;0% Za

Q% = x2d . . -
fap is @ Lagrangian multiplier,

0 = (éat rendering 62° non-dynamic.

algebra

v

invariant Lagrangian

P translations
: L = my=Q2Q, + 3 Q%

Mg, Lorentz transformations
Zzp  constant field strength

v

results in field equations

mx? = fab).(b

[Pa’Pb] = Zab
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Maxwell,, algebra, or the road to non-constant fields

1. extend Lie(G) with new generators from P,-commutator, like

[Zab’ Pc] = Yabc

2. Jacobi identity implies

Yiabe] = [Zfab> Pyl = [[Pja> Pb), Pej) = 0

> repeat ¢-times to get Maxwelly;.1 algebra

P2 Zap Yabe
L] H 1]

> take subalgebra generated by

Sabcd

|+

[]

Tabcde
LT

~[ Ito integrate out auxiliary fields 6

(o0

mx? = Fabkb with Taylor expansion F, = Z fabey..c XS+ X

=0
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Degrees of freedom in linearized gravity. Part I: the complex

> frame field
> symmetries
> spin-connection

> torsion

e?d =42 a
T d(ae)
06 = dé? + N?pdx®

6wl = dN3y

T2 = ds? 4+ w?p A dxP
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Degrees of freedom in linearized gravity. Part I: the complex

» frame field e? =62 + &2
TS ()
> symmetries 66 = dé? + N3pdxP
> spin-connection ow?p = dN%p
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Degrees of freedom in linearized gravity. Part I: the complex

» frame field e? =62 + &2
TS ()
> symmetries 66 = dé? + N3pdxP
> spin-connection ow?p = dN%p
T(w?)
> torsion T2 = d&? 4+ 0 A dxP
> curvature R2p, = dw?
&8 -,-a) N

Aab > >

/ /ab/BI
s

C% —— BI(C%) — -

useful relations
ab
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e? = gldx’

Vief =0



Degrees of freedom in linearized gravity. Part I: the complex useful relations

. b
» frame field e? = 67 + &2 t(A%) gij = Nab€;'€;
> symmetries 5e? = de? + NpdxP &% = £2dx’
. . a _ a Al
> spin-connection owp = dA\%p () Vief =0
> torsion T2 = d&? 4+ 0 A dxP
> curvature R2p, = dw?
£ BI(T®) ——
/ / / / 2 -0
Aab N N ab S BI ) _ »
/ T

d d=0
b%BICab)—) oT+ToO
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Degrees of freedom in linearized gravity. Part Il: cohomology isee i.e. vasitiev 05]

O (1]
£ 5

/\ab } wab

» compute cohomology for all diagonal exact sequences

» only with Weyl tensor cohomology classes of €2 and R4, match



Degrees of freedom in linearized gravity. Part Il: cohomology isee i.e. vasitiev 05]

H [T T

£ d y ga y _Ta s BI(T3) —>
/: //Dj /: - /:

A2y S Wi —R?, —BI(R%,) ——>

» compute cohomology for all diagonal exact sequences
» only with Weyl tensor cohomology classes of €2 and R4, match
> after imposing torsion constraint (T2 = 0), we get

gauge —— dof — eom —— Bianchi



The background independent version and Cartan geometry

> idea: compress complex into a chain

g —9L s 8 s TE BT
Ny ——— w' —— R% — BI(R%)

S

Cq, —— BI(C?%,)



The background independent version and Cartan geometry

» idea: compress complex into a chain algebra from point particle
N a ab P, translations
& =¢&"Pa+ N"Map Ma,  Lorentz transformations
3
£ € — % T& 3 BI(T?)

////

Np —— w?y ——> R3% —— BI(R%)

S

Cq, —— BI(C?%,)




The background independent version and Cartan geometry

> idea: compress complex into a chain

&= ¢Pa+ NMas ,

e

é_-a

Nap

l

N~

e

\/

& =8Py + w*Mgp

>

g4 T8 —— BI(T9)
w?, — R%, —— BI(R%,) ——

//

Cq, —— BI(C?%,)



The background independent version and Cartan geometry

> idea: compress complex into a chain

E=8P+ NMy,,  £=6Py+ w®My,
¢ —— &

ga J) 8

Nap

C% — BI(C%) — >
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> idea: compress complex into a chain
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The background independent version and Cartan geometry

> idea: compress complex into a chain
E=EPy + NPMyy,  &=6Pa+ 0P My,
» and use exterior derivative
d=d+eén with

é = ePadx' + w® My Cartan connection

> substituting & — & in the chain

» only input is model space G/

¢ —4 5 & — » T — s BI(T) ——
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Where is the subalgebra of Maxwell.,?

) o minimal coupling

—fB, B = 1Bapdx? A dxP

Xé(1,0)
three-form field strength
H=dB
> gauge transformatio/ diffeomorphism

0B =dp+ LB
> gauge transformation for the gauge transformation

op =dy



Where is the subalgebra of Maxwell.,?

. O+0
X;)fA

> gauge transformation
6B =dgp + LB, with combined parameter ¢4
> gauge transformation for the gauge transformation

op =dy

(&2 ¢a)



Where is the subalgebra of Maxwell.,?

. O+0

X > EA > EAB > Tapg —— ...

A

Aap —— wapc —— Rapecp — ...

> gauge transformation
6B =dp+ LB,  withcombined parameter &4 =(£2 ¢a)
> gauge transformation for the gauge transformation

op =dy
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fixed by generalized Cartan geometry



Where is the subalgebra of Maxwell.,?

. D+i

Dxi—i—o

X > &n

A

AaB

> EAB > Tagc ———— ...

7

—— waBc — RaBcp —— ...

J

fixed by generalized Cartan geometry
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Where is the subalgebra of Maxwell.,?

. O+0
D R
X > EA
@ 4
34—% Mg
D
T »
H% Aasc
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Where is the subalgebra of Maxwell.,?

] D+i COxT+ e
N
X 0 > En > EAB > Tapgg ———— ...

T

Aap ——— wapc —— RaBecp — ...

e

WABCD
AaBc 1 S .
PABCD

1]
_l’_
awes|

~

swes|

- J
fixed by generalized Cartan geometry




Where is the subalgebra of Maxwell.,?

] O+ COxT+ e
e N
X 0 > &n > EAB > TaABc ———— ..,
T —
_ //' AD—{_./
3"_% Aap —— wasc — Ras
D /
1, ®»
1+§ Assc | >
— (0]

(ESJFEEJHJFH)Jr% Nascp

- J
fixed by generalized Cartan geometry




Where is the subalgebra of Maxwell.,?

O+ CxC+e
'
> €A > EAB > Tapg —— ...
5 //' Ai—{—O/
3"_% A +— wapc — Ragecp —— ...
o /
s WABCD
= Masc | PABCD
(0]
3 ABCD
o) /l / /
:/ .

fixed by generalized Cartan geometry
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Relevant features of generalized Cartan geometry (poiacek, siegel 13; Butter, FH, Pope, Zhang 23; FH, Hulik, Osten 24]

y & ° . E
/NN
& N E w p

s T s BI(T) ———

X

> new connection p with corresponding curvature
» model space is double coset H\G/H generated by

e B Pa taB taBc

fixed by 72 = 0 & cohomology

> specified by a symmetric, invariant bilinear form « on Lie(H)
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The point particle on steroids

> we already know the algebra
aa Fab acFab adacFab Ox . --acFab
] | [ ] -] ]
i B H = | |

f "on-shell algebra"

> Lie(H) is the free Lie algebra generated by tABC 148 Pa  tag tasc

0 O 6g
1. introduce TA = (?a Pa fa) with [tA’ té] = f/z\écté Nig = 0 748 0
o L 85 0 —Kaﬁ
2. define S = 1f;326%656C, and {64, 68) = ;B kg O &
AB _| o 7”8 0
3. solve {S, S} = 0 (linear order by order) n o
o 0 0
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A tower of corrections

XL>§A

2 _ AALA;
N2 = N"Dta A Aasc

2 _ By.B
Wy =w, BB

i-2j-2 _ %pA1...A,-B1.

.B;
P ta,..A N BB

VNN

1
®
S}

Y]
>
o]
Q
O

RANINY



A tower of corrections

XL>§A
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i—2 _ By..B;
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A tower of corrections
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A tower of corrections
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A tower of corrections
D
X — éa
RYg = dw)+ tp > A°

Z[wfq,a/é]lto + ...
ij t; A

non-linear terms from gen. Cartan

b 5 N2

INININTN

EAB

g
>

IVNIN

o

2
3]
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A tower of corrections

X — £a

RYg = dw)+ tp > A°
Z[w%,ij]ho + ...
ij t; A

H is graded (x vanishes)
b > N2

[ti, ] C tiyj

no a’-corrections

INININTN

eae — Tapc ——




A tower of corrections
D
X — éa

R = dw)+ fo 5 A\

Z[wk,w’é]lm + ...
ij t; A

H is a filtration (x non-zero)

61 | t

k<i+j

b 5 N2

a tower of o’-corrections arises

INININTN

NN
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> admissible «’s are parameterized by « = «(a, b, ¢, d, e, f,...)

have to be there [Achileas Gitsis, FH 24]



A skyline and an evaded no-go theorem
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> each parameter creates a tower of o’-corrections

a.b currently ;
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A skyline and an evaded no-go theorem
» admissible k’s are parameterized by x = k(a, b, c,d, e, f,...)
> each parameter creates a tower of a’-corrections

> no-go for ’3-tower from deformed O(d)xO(d) symmetry psia, kama, wu 24

No problem, we don’t need this symmetry!

\ theories

o all
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Where to go from here?
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exceptional Cartan geometry: rH, vuno sakatani 23]
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Where to go from her¢ Integrability, Dualities and Deformations 2025

MENIERES

integrability

RG flows @ NORDITA (Stockholm, Sweden)

> 08.09-12.09.2025 workshop
» 15.09-19.09.2025 conference

https://indico.fysik.su.se/event/8807
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https://indico.fysik.su.se/event/8807
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