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String amplitudes, Effective Field Theory and gravity
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l , Hijk = 3∂[iBjk ], ϕ, ∇i building blocks

4. fix their coefficients my matching the amplitudes
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2. identify their symmetries

▶ diffeomorphisms, and

▶ Abelian gauge transformations

3. expand action by writing all terms allowed by symmetries (α′)

Rijk
l , Hijk = 3∂[iBjk ], ϕ, ∇i building blocks

4. fix their coefficients my matching the amplitudes

S =
2π

(4π2α′)4

∫
dxd √−ge−2ϕ

[
R + 4∇iϕ∇

iϕ+ 1
12Hijk Hijk + α′(. . . ) + . . .

]
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α′2 60 bos., het.
α′3 872 all

▶ string loop corrections (gs = eϕ)

∼ g2g−2+n
s

∼ g3
s=

α
′

gs0 ∞

∞

Expansion in α′ and gs! We know only

▶ leading orders in supergravity

▶ thanks to holography a bit more

How to go beyond?
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Idea: spontaneously broken symmetries

1. select relevant degrees of freedom

2. identify their symmetries*)

3. ...

▶ fermionic
▶ hidden
▶ spontaneously broken

additional symmetries

Coset construction (non-linear realization)

▶ G = the full symmetry group

▶ H = residual symmetries after spontaneous breaking

▶ introduce Mauer-Cartan form Ω = g−1dg for g ∈ G/H

▶ expand it in broken generators ta as Ω = Ωa ta + . . .

Lagrangian

L = L(Ωa ,Da)
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Example: charged particle in an electromagnetic field
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Ωa = ẋadτ

▶ invariant Lagrangian

L = m
√
−ΩaΩa

▶ results in field equations

mẍa = 0
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Ωab =
(
θ̇ab + ẋ [axb]

)
dτ

algebra

Pa translations
Mab Lorentz transformations
Zab constant field strength

[Pa ,Pb ] = Zab

▶ invariant Lagrangian

L = m
√
−ΩaΩa +

1
2 fabΩ

ab

▶ results in field equations

mẍa = fab ẋb

fab is a Lagrangian multiplier,
rendering θab non-dynamic.
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Maxwell∞ algebra, or the road to non-constant fields

1. extend Lie(G) with new generators from Pa-commutator, like

[Zab ,Pc ] = Yabc

2. Jacobi identity implies

Y[abc] = [Z[ab ,Pc]] = [[P[a ,Pb ],Pc]] = 0

▶ repeat ℓ-times to get Maxwellℓ+1 algebra [Bonanos, Gomis 08; Kleinschmidt, Gomis 17]

Pa Zab Yabc Sabcd Tabcde ...

+ · · ·+ ...

▶ take subalgebra generated by ··· to integrate out auxiliary fields θ...

mẍa = Fab ẋb with Taylor expansion Fab =
∞∑
ℓ=0

fabc1...cℓx
c1 · · · xcℓ
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mẍa = Fab ẋb with Taylor expansion Fab =
∞∑
ℓ=0

fabc1...cℓx
c1 · · · xcℓ



6/16

Maxwell∞ algebra, or the road to non-constant fields

1. extend Lie(G) with new generators from Pa-commutator, like

[Zab ,Pc ] = Yabc

2. Jacobi identity implies

Y[abc] = [Z[ab ,Pc]] = [[P[a ,Pb ],Pc]] = 0

▶ repeat ℓ-times to get Maxwellℓ+1 algebra [Bonanos, Gomis 08; Kleinschmidt, Gomis 17]

Pa Zab Yabc Sabcd Tabcde ...

+ · · ·+ ...

▶ take subalgebra generated by ··· to integrate out auxiliary fields θ...
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Hypothesis

α′-corrections in supergravity might be governed
by a subgroup of the Maxwell∞ group.

▶ which subgroup?

Avoid new, unphysical degrees of freedom!

▶ HOW?

By having some kind of a coset construction!
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Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]
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▶ compute cohomology for all diagonal exact sequences

▶ only with Weyl tensor cohomology classes of εa and Ra
b match

▶ after imposing torsion constraint (Ta = 0), we get

gauge dof eom Bianchi
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▶ only with Weyl tensor cohomology classes of εa and Ra
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The background independent version and Cartan geometry

ξa εa Ta BI(Ta) · · ·

Λa
b ωa

b Ra
b BI(Ra

b) · · ·

Ca
b BI(Ca

b) · · ·

d

τ

▶ idea: compress complex into a chain

▶ and use exterior derivative

d̂ = d + ê∧ with

ê = ea
i Padx i + ωabMab Cartan connection

▶ substituting ε̂→ ê in the chain

▶ only input is model space G/H
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▶ only input is model space G/H



10/16

The background independent version and Cartan geometry

ξ̂ ε̂ T̂ BI(T̂) · · ·
d̂

▶ idea: compress complex into a chain

ξ̂ = ξaPa + ΛabMab , ε̂ = εaPa + ωabMab , . . .

▶ and use exterior derivative

d̂ = d + ê∧ with
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Where is the subalgebra of Maxwell∞?

+ xa(τ)

τ

minimal coupling

−q
∫

A , A = Aadxa

two-form field strength

F = dA , F = 1
2Fabdxa ∧ dxb

▶ gauge transformation

δB = dφ+ LξB

▶ gauge transformation for the gauge transformation

δφ = dχ
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χ ξA
D

▶ gauge transformation

δB = dφ+ LξB , with combined parameter ξA =
(
ξa φa

)
▶ gauge transformation for the gauge transformation

δφ = dχ
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Relevant features of generalized Cartan geometry [Poláček, Siegel 13; Butter, FH, Pope, Zhang 23; FH, Hulik, Osten 24]

χ̂ ξ̂ Ê T̂ BI(T̂) · · ·
D̂

ξ Λ E ω ρ

▶ new connection ρ with corresponding curvature

▶ model space is double coset H̃\G/H generated by

. . . t̃ABC t̃AB PA tAB tABC . . .

▶ specified by a symmetric, invariant bilinear form κ on Lie(H)
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The point particle on steroids

+

▶ we already know the algebra

∂a Fab ∂cFab ∂d∂cFab ∂x . . . ∂cFab

···

▶ Lie(H̃) is the free Lie algebra generated by f̃

1. introduce tÂ =
(̃
tα PA tα

)
with [tÂ , tB̂ ] = fÂ B̂

Ĉ tĈ

2. define S = 1
6 fÂ B̂Ĉθ

ÂθB̂θĈ , and {θÂ , θB̂ } = ηÂ B̂

3. solve {S,S} = 0 (linear order by order)
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with [tÂ , tB̂ ] = fÂ B̂
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⋃
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tk

a tower of α′-corrections arises
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A skyline and an evaded no-go theorem

▶ admissible κ’s are parameterized by κ = κ(a, b , c, d, e, f , . . . )

▶ each parameter creates a tower of α′-corrections

▶ no-go for α′3-tower from deformed O(d)×O(d) symmetry [Hsia, Kamal, Wulff 24]

No problem, we don’t need this symmetry!

have to be there [Achilleas Gitsis, FH 24]
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