Consistent Truncations \& Dualties

Falk Hassler

based on 2211.13241 with Chris Pope, Daniel Butter, Hoayu Zhang 2212.14886 with Yuho Sakatani

Consistent Truncations

field equations $\delta S=0 \longrightarrow$ truncated field equations $\delta S_{\mathrm{red}}=0$

truncation

uplift

ansatz	consistent ???
$\varphi_{2}=0$	
$\varphi_{2}=0, m_{2} \rightarrow \infty$	
$\varphi_{2}=\varphi_{1}, m_{2}=m_{1}$	

more compilcated for supergravity

$$
S=\int \mathrm{d}^{D} e^{-2 \phi}\left(R+4(\partial \phi)^{2}-\frac{1}{12} H^{2}+\ldots\right)
$$

Applications:

- AdS/CFT
- flux compactifications
string pheno / swampland
- gauged supergravity

CHALLENGE: find ansätze

Generalised Dualities

U-duality $=T$ - Unified with S-duality
S-duality:

requires Abelian isometries (torus)

Just the tip of the iceberg!

Abelian \subset non-Abelian \subset Poisson-Lie \subset WZW-Poisson-Lie

\cap	\cap
dressing coset \subset	generalised coset

Example:Hamilonian formulation of D-dim. bosonic string

$$
H=\frac{1}{4 \pi \alpha^{\prime}} \int \mathrm{d} \sigma J^{M} \mathcal{H}_{M N} \mathrm{~J}^{N} \quad \begin{array}{cc}
& \mathcal{H}_{M N}=\left(\begin{array}{cc}
g-B g^{-1} B & -B g^{-1} \\
g^{-1} B & g^{-1}
\end{array}\right)_{M N}
\end{array}
$$

and currents $J^{M}=\left(\partial_{\sigma} x^{m} \quad p_{m}\right) \longrightarrow \circ$ canonical momentum

$$
p_{m}=g_{m n} \partial_{\tau} X^{m}+B_{m n} \partial_{\sigma} X^{n}
$$

with Poisson brackets

$$
\left\{J^{\circ}(\sigma), J^{N}\left(\sigma^{\prime}\right)\right\}=2 \pi \alpha^{\prime} \delta^{\prime}\left(\sigma-\sigma^{\prime}\right) \eta^{M N} \quad \begin{array}{ll}
& \mathrm{O}(\mathrm{D}, \mathrm{D}) \text { metric } \\
\eta^{M N}=\left(\begin{array}{ll}
0 & \mathbf{1} \\
\mathbf{1} & 0
\end{array}\right)^{M N}
\end{array}
$$

IDEA: redefine the current $\quad J^{A}=\frac{1}{\sqrt{2 \pi \alpha^{\prime}}} E^{A}{ }_{M} J^{M}$

$$
\text { generalised fluxes defined by } \mathcal{L}_{E_{A}} E_{B}^{I}=F_{A B}^{C} E_{C}{ }^{I}
$$

$$
\begin{aligned}
& \begin{aligned}
\left\{J^{A}(\sigma), J^{B}\left(\sigma^{\prime}\right)\right\} & =\delta\left(\sigma-\sigma^{\prime}\right) \\
H & \left.=\frac{1}{2} \oint \mathrm{~d} \sigma J^{A} \mathcal{H}_{A B}^{A B}\right) J^{C}(\sigma)+J^{\prime}\left(\sigma-\sigma^{\prime}\right.
\end{aligned} \\
& \text { Def.: Generalised Lie derivative }
\end{aligned}
$$

$$
\mathcal{L}_{U} V^{I}=U^{J} \partial_{J} V^{I}-U^{J}\left(\partial_{J} V^{I}-\partial^{I} V_{J}\right)
$$

For Abelian \subset non-Abelian \subset Poisson-Lie \subset WZW-Poisson-Lie $\quad F_{A B C}=$ const.

Generalised group manifold (parallelisable space)

left- or right-invariant
$L_{e_{a}} e_{b}=f_{a b}{ }^{c} e_{c}{ }^{i} \longleftarrow$ vector fields

$$
\begin{aligned}
& \text { i.e. on } \\
& \mathrm{SU}(2)=S^{3}
\end{aligned}
$$

(1) Lie group \mathcal{D} with generators

$$
\left[t_{A}, t_{B}\right]=F_{A B}^{C} t_{C}
$$

(2) ad-invariant pairing $\left\langle t_{A}, t_{B}\right\rangle=\eta_{A B}$
(3) maximally isotropic subgroup H

$$
\left\langle t^{a}, t^{b}\right\rangle \stackrel{=0 \quad \text { generators }}{ }
$$

$$
E_{A}{ }^{I}
$$

on
$H \backslash \mathcal{D}$
σ-model on

Observation: Gen. para. spaces first appeared in consistent truncations

Systematics of consistent truncations

Theorem 1:
[Cassini, Jose,Petrini, Waldram 2019]

Let M be a D -dimensional manifold with generalised F-structure defining a set of invariant tensors and only constant, singlet intrinsic torsion.
Then there is a consistent truncation of supergravity on M by expanding all bosonic fields in terms of the invariant tensors.

covariant derivative:

$$
\nabla_{I} E_{A}^{J}=\partial_{I} E_{A}^{J}-\Omega_{I A}^{B} E_{B}^{J}+\Gamma_{I K}^{J} E_{A}^{K}=0
$$

generalised spin connection

Homogeneous spaces (cosets)

Theorem 2: Let (M, g) be a connected and simply-connected complete Riemannian manifold. Then, the following statements are equivalent:
(1) The manifold M is Riemannian homogenous
(2) M admits a linear connection ∇ satisfying:

Klein geometry: $\quad M=G(F) \longleftarrow$ structure group

Generalised homogeneous spaces (cosets)

$M=H \backslash \mathcal{D} / F$ where F needs to be isotropic
Has covariantly constant:

- generalised torsion
- generalised Riemann tensor
expected from AS theorem
- higher curvature tensor(s)

$$
\mathcal{L}_{\xi} V^{I}=0 \quad \forall V^{I} \quad \text { and } \quad \xi^{I}=\partial^{I} \chi \quad \text { (gauge for gauge symmetry) }
$$

May contain singularites!
Example: $\operatorname{SL}(2) / \mathrm{U}(1)$ gauged WZW model (cigar and T-dual trumpet)

Remarks

- covers all known generalised T-dualities

```
Abelian \subset non-Abelian }\subset\mathrm{ Poisson-Lie }\subset\mathrm{ WZW-Poisson-Lie
                                    \cap
                                    \cap
                                    dressing coset }\subset\mathrm{ generalised coset
```

- many new consistent truncations
- covers all known integrable σ-models
- generalisations to a supergroups (done) full type II with fermions
- heterotic/type I (nearly done)
- U-dualities (work in progress)

Prospective

Observation: The underlying structures (i.e. Poisson-Lie groups) are the classical limit of quantum groups and quantum homogenous spaces.
$\{\cdot, \cdot\} \rightarrow-i \hbar[\cdot, \cdot]$

to obtain higher derivative corrections and explore applications to

- integrability
- holography
- flux compactifications
- ...

