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11. String compactification on the circle

To be discussed on Thursday, January 16, 2014 in the tutorial.

Exercise 11.1: The bosonic string on S1: The specturm

As was shown in lecture, the sector with vanishing Kaluza-Klein momentum and zero winding

number (i.e., the sector with M = L = 0), simply corresponds to the ordinary field theoretic
zero-modes of the 26D fields when they are dimensionally reduced on the circle. In particular,
the sector with N = N̄ = 0 describes the 25D remnant of the 26D tachyon, whereas the sector
with N = N̄ = 1 describes the 25D massless fields that descend from the massless 26D fields
GMN (the metric), BMN (the Kalb-Ramond field) and Φ (the dilaton). Under this dimensional
reduction, the 26D metric GMN decomposes into the 25 metric Gµν (µ, ν, · · · = 0, 1, 2, . . . , 24),
a 25D vector field Gµ,25 and a 25D scalar G25,25, whereas the two-form BMN gives rise to a
25D two-form Bµν and a 25D vector Bµ,25, and the dilaton Φ simply leads to a 25D scalar.
The vacuum expectation value (G25,25) ∼ R of the scalar G25,25 describes the (dynamically
undetermined) size of the circle, and the two vector fields gauge two U(1)’s.
A prime example for truly stringy states without a point particle analogue, on the other hand,
is given by the states with (M,L) = (±1,±1) and (M,L) = (±1,∓1). For these states, the
level matching condition

N − N̄ = ML

implies N − N̄ = 1 and N − N̄ = −1, respectively. The lowest lying modes in this sector
correspond to (N, N̄) = (1, 0) and (N, N̄) = (0, 1), respectively. As was shown in lecture, each
of these two cases leads to two 25D vector fields and two 25D scalars with a radius dependent
mass

m2
25D =

1

R2
+
R2

4
− 1 ≥ 0 .

For R =
√

2 =
√
α′, these states become massless, and the four vector fields combine with

Gµ,25 and Bµ,25 to fill out the adjoint representation of SU(2)L×SU(2)R, which is Higgsed to
U(1)L×U(1)R by the scalar field G25,25 at generic values R 6=

√
α′.

In this exercise, we take a closer look at some of the other states in the spectrum that were not
yet discussed in the lecture.

a) Show that in the sectors with (M,L) = (±1,±1) and (M,L) = (±1,∓1) and (N · N̄) > 0,
there can be no massless or tachyonic states, no matter how the radius R is chosen.

b) Consider now the sector with |ML| > 1. Can there be states in this sector that can become
massless or tachyonic at some particular values R? If yes, give the corresponding values of
R.

c) Consider now the sector M 6= 0 and L = 0. What is the constraint on the occupation
numbers N and N̄ for these states?

d) Show that for any given M 6= 0 with L = 0 and N = N̄ = 0, all three cases (tachyonic,
massless, massive) can be realized by choosing R appropriately. What is the mass squared
value for the special radius R =

√
2 =
√
α′?

e) Show that, for M 6= 0, L = 0 and N = N̄ ≥ 1 (R <∞), there can only be massive states.

f) Repeat parts c) through e) for states of the form M = 0, L 6= 0.
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Exercise 11.2: Charges of Kaluza-Klein and winding modes

As was shown in lecture, the compactification of the closed string on a circle of radius R leads

to two 25D vector fields Gµ,25 and Bµ,25 that are massless for arbitrary values of the radius
R. These two vector fields correspond to zero modes of the (µ, 25)-components (µ, ν, · · · =
0, 1, . . . , 24) of the 26D metric GMN and the 26D two-form field BMN (M,N, · · · = 0, 1, . . . , 25),
respectively. They give rise to a gauge group U(1)L×U(1)R that remains unbroken for all R.
In addition, the closed string spectrum also contains four more vector fields that can also
become massless, but only at the self-dual radius R =

√
2 =

√
α′. They correspond to the

excitations

|V µ
± 〉 = αµ−1|M = ±1, L = ±1〉

|V ′µ±〉 = ᾱµ−1|M = ±1, L = ∓1〉 .

In the lecture, it was claimed that these additional vector fields combine with Gµ,25 and Bµ,25

to fill out the full adjoint representation of SU(2)L×SU(2)R, which should thus be considered as
the full gauge group, which is unbroken at the self-dual radius, but Higgsed to U(1)L×U(1)R at
generic values of R. For this to be possible, V µ

± and V ′µ± have to be charged with respect to the
U(1)’s gauged by Gµ,25 and Bµ,25 (just as the W±-bosons have to be charged in the Standard
Model). In this exercise, we will uncover the physical origin of this charge.
To understand this origin, we have to understand first how the closed string couples to the
metric GMN and the two-form BMN . So far, we have only studied the propagation of strings
in flat Minkowski spacetime (corresponding to GMN = ηMN) and without any background
two-form field BMN turned on. The action in this simplified case is just the Polyakov action,

SP = −T
2

∫
d2σ
√
hhαβ∂αX

M∂βX
NηMN

hαβ=ηαβ
= −T

2

∫
d2σ

(
−∂τXM∂τX

N + ∂σX
M∂σX

N
)
ηMN .

In a more general, curved, background with metric GMN(X), this is simply generalized by
replacing the constant Minkowski metric ηMN by the curved metric GMN(X):

SP = −T
2

∫
d2σ

(
−∂τXM∂τX

N + ∂σX
M∂σX

N
)
GMN(X(σ, τ)) . (1)

The coupling of a string to a non-vanishing background BMN -field, on the other hand, is
described by adding the action

SB =
T

2

∫
d2σεαβ∂αX

M∂βX
NBMN(X(σ, τ))

= T

∫
dσdτ∂τX

M∂σX
NBMN(X(σ, τ)) , (2)

where εαβ = −εβα , (ετσ = 1) is the 2D epsilon tensor. This action is simply the integral of
the pull-back of the two-form BMN to the two dimensional world sheet and can be viewed as a
higher-dimensional analogue of the eletromagnetic coupling of a point particle of charge q in d
dimensions with worldline xµ(τ):

Se.m. =

∫
ddxjµAµ = q

∫
dτ(∂τx

µ)Aµ(x(τ)) , (3)

with jµ(x) =
∫
dτqẋµδ(d)(xµ − xµ(τ)) being the current density. The integrand here is likewise

nothing but the pull-back of the one-form Aµ(x) to the worldline of the particle.
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a) Consider the mode expansions (α′ = 2)

Xµ(σ, τ) = xµ + 2pµτ (+oscillators)

≡ xµ(τ) (+oscillators) (4)

X25 = x25 + 2
M

R
τ + LRσ (+oscillators) . (5)

Setting all oscillators terms in (4) and (5) equal to zero and considering only constant1

GMN(xµ, x25) = GMN , calculate the term in (1) that is proportional to Gµ,25, and compare
this with Se.m. in (3) to infer that the charge of a string with respect to the 25D vector
field Gµ,25 is proportional to its Kaluza-Klein momentum number M . Does the winding
number L also enter the charge, and if yes, what is the proportionality?

b) Make a similar analysis for the action SB in equation (2) and show that the charge of a
string without oscillators with respect to the (constant or “σ-averaged” part of the) 25D
vector field Bµ,25 is proportional to the winding number L. What is the dependence upon
the Kaluza-Klein momentum number M in this case?

Conclusions: Due to the non-trivial Kaluza-Klein momentum numbers M and winding num-
bers L, the states |V µ

± 〉 and V ′µ±〉 are charged with respect to (linear combinations of) Bµ,25 and
Gµ,25, as they should in order to fit in th adjoint of SU(2) groups.

Exercise 11.3: T-duality

In a circle compactification for the coordinate X25, the T-duality transformation acts on the

coordinate field X25(σ, τ) = X25
L (τ + σ) +X25

R (τ − σ) as

X25(τ, σ)→ X̄25(σ, τ) := X25
L (τ + σ)−X25

R (τ − σ)

a) Using the expansion

X25
L (τ + σ) =

1

2
x25 +

(
M

R
+

1

2
LR

)
(τ + σ) + oscillators

X25
R (τ − σ) =

1

2
x25 +

(
M

R
− 1

2
LR

)
(τ − σ) + oscillators ,

show that X25(σ, τ) → X̄25(σ, τ) indeed swaps the rôles of the Kaluza-Klein momentum
number M and the winding number L.

b) Show that the above T -duality leaves the energy momentum tensor T±± = 1
2
∂±X · ∂±X

invariant.

c) An open string ca have either Neumann (N) or Dirichlet (D) boundary conditions at each
endpoint σ = σ∗ = 0, π:

∂σX
µ|σ∗ = 0 (D)

∂τX
µ|σ∗ = 0 (N)

Show that the T-duality transformation X → X̄ = XL − XR interchanges the two types
of boundary conditions.

1For a non-constant metric, the relevant vector field is the “σ-averaged” quantity Ḡµ,25(τ) :=∫
dσGρ,25(X(τ, σ)).
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