Poisson-Lie T-duality in Double Field Theory

Falk Hassler

University of North Carolina at Chapel Hill
University of Pennsylvania

based on

1707.08624, 1611.07978

and

1502.02428 with Pascal du Bosque, Dieter Lüst and Ralph Blumenhagen

January 17th, 2018
Motivation

- Abelian T-Duality
- Double Field Theory
- Generalized Geometry
- Doubled Geometry

Chris Hull
Barton Zwiebach
Olaf Hohm
Motivation

T-Duality

abelian

Double Field Theory

Generalized Geometry

Doubled Geometry

T-Duality

non-abelian

Poisson-Lie

Chris Hull
Barton Zwiebach
Olaf Hohm
Fernando Quevedo
Yolanda Lozano
Ctirad Klimcik
Daniel Thompson

Doubled

Geometry

Double Field Theory

Generalized Geometry

time
Motivation

abelian T-Duality

non-abelian
Poisson-Lie

Doubled Geometry

Double Field Theory

Generalized Geometry

abelian T-Duality

Doubled Geometry

Double Field Theory

Generalized Geometry

Chris Hull
Barton Zwiebach
Olaf Hohm
Fernando Quevedo
Yolanda Lozano
Ctirad Klimcik
Daniel Thompson
Dieter Lüst
Ralph Blumenhagen
Daniel Waldram
Charles S-C. . .
Outline

1. Motivation
2. Poisson-Lie T-duality
3. Double Field Theory on Drinfeld doubles
4. Application: Dilaton transformation
5. Summary
Drinfeld double [Drinfeld, 1988]

Definition: A **Drinfeld double** is a 2D-dimensional Lie group \mathcal{D}, whose Lie-algebra \mathfrak{d}

1. has an ad-invariant bilinear form $\langle \cdot, \cdot \rangle$ with signature (D, D)
2. admits the decomposition into two maximal isotropic subalgebras \mathfrak{g} and \mathfrak{g}
Definition: A Drinfeld double is a 2D-dimensional Lie group \mathcal{D}, whose Lie-algebra \mathfrak{d}

1. has an ad-invariant bilinear for $\langle \cdot, \cdot \rangle$ with signature (D, D)
2. admits the decomposition into two maximal isotropic subalgebras \mathfrak{g} and $\tilde{\mathfrak{g}}$

$$(t^a \ t_a) = t_A \in \mathfrak{d}, \quad t_a \in \mathfrak{g} \quad \text{and} \quad t^a \in \tilde{\mathfrak{g}}$$

$$\langle t_A, t_B \rangle = \eta_{AB} = \begin{pmatrix} 0 & \delta^a_b \\ \delta^b_a & 0 \end{pmatrix}$$
Drinfeld double [Drinfeld, 1988]

Definition: A Drinfeld double is a 2D-dimensional Lie group \mathcal{D}, whose Lie-algebra \mathfrak{d}

1. has an ad-invariant bilinear for $\langle \cdot , \cdot \rangle$ with signature (D, D)
2. admits the decomposition into two maximal isotropic subalgebras \mathfrak{g} and $\tilde{\mathfrak{g}}$

\[
\begin{aligned}
(t^a \ t_a) &= t_A \in \mathfrak{d}, \quad t_a \in \mathfrak{g} \quad \text{and} \quad t^a \in \tilde{\mathfrak{g}} \\
\langle t_A, t_B \rangle &= \eta_{AB} =
\begin{pmatrix}
0 & \delta^a \ b \\
\delta^b \ a & 0
\end{pmatrix}
\\
[t_A, t_B] &= F_{AB}^C t_C \quad \text{with non-vanishing commutators}
\end{aligned}
\]

\[
\begin{aligned}
[t_a, t_b] &= f_{ab}^c t_c \\
[t_a, t^b] &= \tilde{f}^{bc} a t_c - f_{ac}^b t^c \\
[t^a, t^b] &= \tilde{f}^{ab} c t^c
\end{aligned}
\]

ad-invariance of $\langle \cdot , \cdot \rangle$ implies $F_{ABC} = F_{[ABC]}$
Poisson-Lie T-duality: 1. Definition [Klimcik and Severa, 1995]

- 2D σ-model on target space M with action
 \[S(E, M) = \int dzd\bar{z} \ E_{ij} \partial x^i \bar{\partial} x^j \]
- $E_{ij} = g_{ij} + B_{ij}$ captures metric and two-form field on M
- inverse of E_{ij} is denoted as E^{ij}
Poisson-Lie T-duality: 1. Definition [Klimcik and Severa, 1995]

- 2D σ-model on target space M with action
 \[S(E, M) = \int dz d\bar{z} E_{ij} \partial x^i \partial \bar{x}^j \]
- $E_{ij} = g_{ij} + B_{ij}$ captures metric and two-from field on M
- inverse of E_{ij} is denoted as E^{ij}
- *left* invariant vector field ν_a^i on G is the inverse transposed of *right* invariant Maurer-Cartan form $t_a \nu^a_i dx^i = dg g^{-1}$
- adjoint action of $g \in G$ on $t_A \in \mathfrak{g}$: $\text{Ad}_g t_A = g t_A g^{-1} = M_A^B t_B$
- analog for \tilde{G}
Poisson-Lie T-duality: 1. Definition [Klimcik and Severa, 1995]

- 2D σ-model on target space M with action
 \[S(E, M) = \int dzd\tilde{z} E_{ij} \partial x^i \partial x^j \]
- $E_{ij} = g_{ij} + B_{ij}$ captures metric and two-from field on M
- inverse of E_{ij} is denoted as E^{ij}
- left invariant vector field v^a_i on G is the inverse transposed of right invariant Maurer-Cartan form $t_a v^a_i dx^i = dg g^{-1}$
- adjoint action of $g \in G$ on $t_A \in \mathfrak{g}$: $\text{Ad}_g t_A = g t_A g^{-1} = M_A^B t_B$
- analog for \tilde{G}

Definition: $S(E, \mathcal{D}/\tilde{G})$ and $S(\tilde{E}, \mathcal{D}/G)$ are Poisson-Lie T-dual if

\[
E^{ij} = v^i_c M^c_a (M^{ae} M^b_e + E_0^{ab}) M^d_b v^j_d \\
\tilde{E}^{ij} = \tilde{v}^c_i \tilde{M}^a_c (\tilde{M}^{ae} \tilde{M}^b_e + E_0^{ab}) \tilde{M}^d_b \tilde{v}^{d_j}
\]

holds, where E_0^{ab} is constant and invertible with the inverse E_0^{-1}.

Motivation

<table>
<thead>
<tr>
<th>Poisson-Lie T-duality</th>
<th>Double Field Theory</th>
<th>Application</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>★★★★★★★</td>
<td>★★★★★★★</td>
<td>★</td>
<td>★★★★★★</td>
</tr>
</tbody>
</table>
Poisson-Lie T-duality: 2. Properties

- captures
 - abelian T-d. G abelian and \tilde{G} abelian
 - non-abelian T-d. G non-abelian and \tilde{G} abelian

[Ossa and Quevedo, 1993; Giveon and Rocek, 1994; Alvarez, Alvarez-Gaume, and Lozano, 1994; ...]
Poisson-Lie T-duality: 2. Properties

- captures \[\begin{cases} \text{abelian T-d.} & G \text{ abelian and } \tilde{G} \text{ abelian} \\ \text{non-abelian T-d.} & G \text{ non-abelian and } \tilde{G} \text{ abelian} \end{cases} \]

 \[\text{[Ossa and Quevedo, 1993; Giveon and Rocek, 1994; Alvarez, Alvarez-Gaume, and Lozano, 1994; ...]} \]

- dual \(\sigma \)-models related by canonical transformation

 \[\text{[Klimcik and Severa, 1995; Klimcik and Severa, 1996; Sfetsos, 1998]} \]

- equivalent at the classical level

- preserves conformal invariance at one-loop

 \[\text{[Alekseev, Klimcik, and Tseytlin, 1996; Sfetsos, 1998; ...; Jurco and Vysoky, 2017]} \]
Poisson-Lie T-duality: 2. Properties

- captures
 \[\begin{aligned}
 &\text{abelian T-d.} & G \text{ abelian} & \text{and } \tilde{G} \text{ abelian} \\
 &\text{non-abelian T-d.} & G \text{ non-abelian} & \text{and } \tilde{G} \text{ abelian}
 \end{aligned}\]

 [Ossa and Quevedo, 1993; Giveon and Rocek, 1994; Alvarez, Alvarez-Gaume, and Lozano, 1994; ...]

- dual \(\sigma\)-models related by canonical transformation

 [Klimcik and Severa, 1995; Klimcik and Severa, 1996; Sfetsos, 1998]

- equivalent at the classical level

- preserves conformal invariance at one-loop

 [Alekseev, Klimcik, and Tseytlin, 1996; Sfetsos, 1998; ...; Jurco and Vysoky, 2017]

- dilaton transformation [Jurco and Vysoky, 2017]

\[\begin{aligned}
\phi &= -\frac{1}{2} \log \left| \det \left(1 + \tilde{g}_0^{-1}(\tilde{B}_0 + \Pi) \right) \right| \\
\tilde{\phi} &= -\frac{1}{2} \log \left| \det \left(1 + g_0^{-1}(B_0 + \tilde{\Pi}) \right) \right| \\
\phi &= \text{details later}
\end{aligned}\]
Additional structure on the Drinfeld double

- right invariant vector E_A^I field on \mathcal{D} is the inverse transposed of left invariant Maurer-Cartan form $t_A E^A_I dX^I = g^{-1} dg$
Additional structure on the Drinfeld double

- right invariant vector E_A^I field on \mathcal{D} is the inverse transposed of left invariant Maurer-Cartan form $t_AE^A_I dX^I = g^{-1} dg$

- two η-compatible, covariant derivatives\(^1\)
 1. flat derivative
 \[
 D_A V^B = E_A^I \partial_I V^B - wF_A V^B, \quad F_A = D_A \log |\det(E^B_I)|
 \]
 2. convenient derivative
 \[
 \nabla_A V^B = D_A V^B + \frac{1}{3} F_{AC}^B V^C
 \]

\(^1\)definitions here just for quantities with flat indices
Additional structure on the Drinfeld double

- *Right* invariant vector E_A^I field on \mathcal{D} is the inverse transposed of *left* invariant Maurer-Cartan form $t_A E^A_I dX^I = g^{-1} dg$

- two η-compatible, covariant derivatives1
 1. flat derivative
 $$D_A V^B = E_A^I \partial_I V^B - w F_A V^B, \quad F_A = D_A \log |\det(E^B_I)|$$
 2. convenient derivative
 $$\nabla_A V^B = D_A V^B + \frac{1}{3} F_{AC}^B V^C$$

- generalized metric $\mathcal{H}_{AB} (w = 0)$
 $$\mathcal{H}_{AB} = \mathcal{H}_{(AB)}, \quad \mathcal{H}_{AC} \eta^{CD} H_{DB} = \eta_{AB}$$

- generalized dilatton d with e^{-2d} scalar density of weight $w = 1$

1definitions here just for quantities with flat indices
Additional structure on the Drinfeld double

- right invariant vector E_A^I field on \mathcal{D} is the inverse transposed of left invariant Maurer-Cartan form $t_A E^A_I dX^I = g^{-1} dg$
- two η-compatible, covariant derivatives1
 1. flat derivative
 \[D_A V^B = E_A^I \partial_I V^B - w F_A V^B, \quad F_A = D_A \log |\det(E^B_I)| \]
 2. convenient derivative
 \[\nabla_A V^B = D_A V^B + \frac{1}{3} F_{AC}^B V^C \]
- generalized metric $\mathcal{H}_{AB} \ (w = 0)$
 \[\mathcal{H}_{AB} = \mathcal{H}_{(AB)}, \quad \mathcal{H}_{AC} \eta^{CD} H_{DB} = \eta_{AB} \]
- generalized dilaton d with e^{-2d} scalar density of weight $w = 1$
- triple $(\mathcal{D}, \mathcal{H}_{AB}, d)$ captures the doubled space of DFT

1definitions here just for quantities with flat indices
Double Field Theory for \((\mathcal{D}, \mathcal{H}_{AB}, d)\) [Blumenhagen, Bosque, Hassler, and Lüst, 2015]

see also [Vaisman, 2012; Hull and Reid-Edwards, 2009; Geissbuhler, Marques, Nunez, and Penas, 2013; Cederwall, 2014; ...]

- action \((\nabla_A d = -\frac{1}{2} e^{2d} \nabla_A e^{-2d})\)

\[
S_{NS} = \int_{\mathcal{D}} d^{2D} X e^{-2d} \left(\frac{1}{8} \mathcal{H}^{CD} \nabla_C \mathcal{H}_{AB} \nabla_D \mathcal{H}^{AB} - \frac{1}{2} \mathcal{H}^{AB} \nabla_B \mathcal{H}^{CD} \nabla_D \mathcal{H}_{AC} - 2 \nabla_A d \nabla_B \mathcal{H}^{AB} + 4 \mathcal{H}^{AB} \nabla_A d \nabla_B d + \frac{1}{6} F_{ACD} F_B^{CD} \mathcal{H}^{AB} \right)
\]
Double Field Theory for $\mathcal{D}, \mathcal{H}_{AB}, d$ [Blumenhagen, Bosque, Hassler, and Lüst, 2015]
see also [Vaisman, 2012; Hull and Reid-Edwards, 2009; Geissbuhler, Marques, Nunez, and Penas, 2013; Cederwall, 2014; ...]

- action ($\nabla_A d = -\frac{1}{2} e^{2d} \nabla_A e^{-2d}$)

$$S_{NS} = \int_D d^{2D} X e^{-2d} \left(\frac{1}{8} \mathcal{H}^{CD} \nabla_C \mathcal{H}_{AB} \nabla_D \mathcal{H}^{AB} - \frac{1}{2} \mathcal{H}^{AB} \nabla_B \mathcal{H}^{CD} \nabla_D \mathcal{H}_{AC}
ight)$$

- 2D-diffeomorphisms

$$L_\xi V^A = \xi^B D_B V^A + w D_B \xi^B V^A$$

- global $O(D,D)$ transformations

$$V^A \rightarrow T^A_B V^B \quad \text{with} \quad T^A_C T^B_D \eta^{CD} = \eta^{AB}$$
Double Field Theory for (D, \mathcal{H}_{AB}, d) [Blumenhagen, Bosque, Hassler, and Lüst, 2015]

see also [Vaisman, 2012; Hull and Reid-Edwards, 2009; Geissbuhler, Marques, Nunez, and Penas, 2013; Cederwall, 2014; ...]

- action ($\nabla_A d = -\frac{1}{2} e^{2d} \nabla_A e^{-2d}$)

$$S_{NS} = \int_D d^{2D} X e^{-2d} \left(\frac{1}{8} \mathcal{H}^{CD} \nabla_C \mathcal{H}_{AB} \nabla_D \mathcal{H}^{AB} - \frac{1}{2} \mathcal{H}^{AB} \nabla_B \mathcal{H}^{CD} \nabla_D \mathcal{H}_{AC}
- 2 \nabla_A d \nabla_B \mathcal{H}^{AB} + 4 \mathcal{H}^{AB} \nabla_A d \nabla_B d + \frac{1}{6} F_{ACD} F_B^{CD} \mathcal{H}^{AB} \right)$$

- $2D$-diffeomorphisms

$$L_\xi V^A = \xi^B D_B V^A + w D_B \xi^B V^A$$

- global $O(D,D)$ transformations

$$V^A \rightarrow T^A_B V^B \quad \text{with} \quad T^A_C T^B_D \eta^{CD} = \eta^{AB}$$

- generalized diffeomorphisms

$$\mathcal{L}_\xi V^A = \xi^B \nabla_B V^A + (\nabla^A \xi_B - \nabla_B \xi^A) V^B + w \nabla_B \xi^B V^A$$

- section condition (SC)

$$\eta^{AB} D_A \cdot D_B \cdot = 0$$
Symmetries of the action

- S_{NS} invariant for $X^I \rightarrow X^I + \xi^A E_A^I$ and

1. $\mathcal{H}^{AB} \rightarrow \mathcal{H}^{AB} + L_{\xi} \mathcal{H}^{AB}$ and $e^{-2d} \rightarrow e^{-2d} + L_{\xi} e^{-2d}$
2. $\mathcal{H}^{AB} \rightarrow \mathcal{H}^{AB} + L_{\xi} \mathcal{H}^{AB}$ and $e^{-2d} \rightarrow e^{-2d} + L_{\xi} e^{-2d}$
Symmetries of the action

- S_{NS} invariant for $X^I \rightarrow X^I + \xi^A E_A^I$ and

1. $\mathcal{H}^{AB} \rightarrow \mathcal{H}^{AB} + L_\xi \mathcal{H}^{AB}$ and $e^{-2d} \rightarrow e^{-2d} + L_\xi e^{-2d}$
2. $\mathcal{H}^{AB} \rightarrow \mathcal{H}^{AB} + L_\xi \mathcal{H}^{AB}$ and $e^{-2d} \rightarrow e^{-2d} + L_\xi e^{-2d}$

<table>
<thead>
<tr>
<th>object</th>
<th>gen.-diffeomorphisms</th>
<th>$2D$-diffeomorphisms</th>
<th>global $O(D,D)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{H}^{AB}</td>
<td>tensor</td>
<td>scalar</td>
<td>tensor</td>
</tr>
<tr>
<td>$\nabla_A d$</td>
<td>not covariant</td>
<td>scalar</td>
<td>1-form</td>
</tr>
<tr>
<td>e^{-2d}</td>
<td>scalar density ($w=1$)</td>
<td>scalar density ($w=1$)</td>
<td>invariant</td>
</tr>
<tr>
<td>η^{AB}</td>
<td>invariant</td>
<td>invariant</td>
<td>invariant</td>
</tr>
<tr>
<td>F^{ABC}</td>
<td>invariant</td>
<td>invariant</td>
<td>tensor</td>
</tr>
<tr>
<td>E_A^I</td>
<td>invariant</td>
<td>vector</td>
<td>1-form</td>
</tr>
<tr>
<td>S_{NS}</td>
<td>invariant</td>
<td>invariant</td>
<td>invariant</td>
</tr>
<tr>
<td>SC</td>
<td>invariant</td>
<td>invariant</td>
<td>invariant</td>
</tr>
<tr>
<td>D_A</td>
<td>not covariant</td>
<td>covariant</td>
<td>covariant</td>
</tr>
<tr>
<td>∇_A</td>
<td>not covariant</td>
<td>covariant</td>
<td>covariant</td>
</tr>
</tbody>
</table>

manifest
Poisson-Lie T-duality: 1. Solve SC [Hassler, 2016]

- fix D physical coordinates x^i from $X^I = \begin{pmatrix} x^i & \tilde{x}^i \end{pmatrix}$ on \mathcal{D} such that $\eta^{IJ} = E_A^I \eta^{AB} E_B^J = \begin{pmatrix} 0 & \cdots \\ \cdots & \cdots \end{pmatrix} \rightarrow$ SC is solved

- fields and gauge parameter depend just on x^i
Poisson-Lie T-duality: 1. Solve SC [Hassler, 2016]

- fix D physical coordinates x^i from $X^I = \left(x^i \ x^{\tilde{i}} \right)$ on D
 such that $\eta^{IJ} = E_A^I \eta^{AB} E_B^J = \begin{pmatrix} 0 & \cdots \\ \cdots & \cdots \end{pmatrix} \rightarrow$ SC is solved

- fields and gauge parameter depend just on x^i

- only two SC solutions, relate them by symmetries of DFT

$$d(X^I) = g(x^i)\tilde{g}(x^{\tilde{i}}) \quad \quad t_A = (t^a \ t_a)$$
Poisson-Lie T-duality: 1. Solve SC [Hassler, 2016]

- fix D physical coordinates x^i from $X^I = \begin{pmatrix} x^i & x^\tilde{i} \end{pmatrix}$ on \mathcal{D}

such that $\eta^{IJ} = E_A^I \eta^{AB} E_B^J = \begin{pmatrix} 0 & \cdots \\ \cdots & \cdots \end{pmatrix} \rightarrow$ SC is solved

- fields and gauge parameter depend just on x^i

- only two SC solutions, relate them by symmetries of DFT

\[
d(X^I) = g(x^i) \tilde{g}(x^\tilde{i}) \quad t_A = (t^a, t_a)
\]

\[
d(X'^I) = \tilde{g}(x'^i) g(x'^\tilde{i}) \quad t^A = (t_a, t^a)
\]
Poisson-Lie T-duality: 1. Solve SC [Hassler, 2016]

- fix D physical coordinates x^i from $X^I = \begin{pmatrix} x^i & \tilde{x}^i \end{pmatrix}$ on D

such that $\eta^{IJ} = E_A^I \eta^{AB} E_B^J = \begin{pmatrix} 0 & \cdots & \cdots \end{pmatrix} \rightarrow$ SC is solved

- fields and gauge parameter depend just on x^i
- only two SC solutions, relate them by symmetries of DFT

$$d(X^I) = g(x^i) \tilde{g}(x^i) \quad t_A = (t^a, t_a)$$

$$d(X''^I) = \tilde{g}(x'^i) g(x'^i) \quad t^A = (t_a, t^a)$$

Motivation
Poisson-Lie T-duality
Double Field Theory
Application
Summary
Poisson-Lie T-duality: 2. As manifest symmetry of DFT

- same structure as in the original paper [Klimcik and Severa, 1995]
- duality target spaces arise as different solutions of the SC
Poisson-Lie T-duality: 2. As manifest symmetry of DFT

- same structure as in the original paper [Klimcik and Severa, 1995]
- duality target spaces arise as different solutions of the SC

Poisson-Lie T-duality:

- 2D-diffeomorphisms $X^I \rightarrow X'^I(X^1, \ldots X^{2D})$ with $d(X^I) = d(X'^I)$
- global $O(D,D)$ transformation $t_A \rightarrow \eta^{AB} t_B$

manifest symmetries of DFT
Poisson-Lie T-duality: 2. As manifest symmetry of DFT

- same structure as in the original paper [Klimcik and Severa, 1995]
- duality target spaces arise as different solutions of the SC

Poisson-Lie T-duality:

- 2D-diffeomorphisms $X^I \rightarrow X''^I(X^1, \ldots X^{2D})$ with $d(X^I) = d(X''^I)$
- global $O(D,D)$ transformation $t_A \rightarrow \eta^{AB} t_B$

manifest symmetries of DFT

- for abelian T-duality $X^I \rightarrow X''^I = X^I$
 \rightarrow no 2D-diffeomorphisms needed, only global $O(D,D)$ transformation
Poisson-Lie T-duality: 2. As manifest symmetry of DFT

- same structure as in the original paper [Klimcik and Severa, 1995]
- duality target spaces arise as different solutions of the SC

Poisson-Lie T-duality:
- 2D-diffeomorphisms $X^I \rightarrow X''^I (X^1, \ldots X^{2D})$ with $d(X^I) = d(X''^I)$
- global $O(D,D)$ transformation $t_A \rightarrow \eta^{AB} t_B$

manifest symmetries of DFT

- for abelian T-duality $X^I \rightarrow X''^I = X^I$
- no 2D-diffeomorphisms needed, only global $O(D,D)$ transformation

Poisson-Lie T-duality is a manifest symmetry of DFT
Equivalence to supergravity: 1. Generalized parallelizable spaces

[Lee, Strickland-Constable, and Waldram, 2014]

- generalized tangent space element $V^I = (V^i \ V_i)$
- generalized Lie derivative

$$\mathcal{L}_\xi V^I = \xi^J \partial_J V^I + (\partial^I \xi^J - \partial_J \xi^I) V^J$$

with

$$\partial^i = (0 \ \partial_i)$$
Equivalence to supergravity: 1. Generalized parallelizable spaces

[Lee, Strickland-Constable, and Waldram, 2014]

- generalized tangent space element \(\hat{V}^I = (V^i \ V_i) \)
- generalized Lie derivative

\[
\hat{L}_\xi \hat{V}^I = \xi^J \partial_J \hat{V}^I + (\partial^I \xi_J - \partial_J \xi^I) \hat{V}^J \quad \text{with} \quad \partial_i = (0 \ \partial_i)
\]

Definition: A manifold \(M \) which admits a globally defined generalized frame field \(\hat{E}_A^I(x^i) \) satisfying

1. \(\hat{L}_{\hat{E}_A} \hat{E}_B^I = F_{AB}^C \hat{E}_C^I \)

where \(F_{AB}^C \) are the structure constants of a Lie algebra \(\mathfrak{h} \)

2. \(\hat{E}_A^I \eta^{AB} \hat{E}_B^J = \eta^{IJ} = \begin{pmatrix} 0 & \delta_i^j \\ \delta_j^i & 0 \end{pmatrix} \)

is a generalized parallelizable space \((M, \mathfrak{h}, \hat{E}_A^I) \).
Drinfeld double $\mathcal{D} \rightarrow$ two generalized parallelizable spaces:

$$(D/\tilde{G}, \vartheta, \hat{E}_A^\hat{l})$$

and

$$(D/G, \vartheta, \tilde{E}_A^\hat{l})$$

\[
\hat{E}_A^\hat{l} = M_A^B \begin{pmatrix} v^b_i & 0 \\ 0 & \nu^b_i \end{pmatrix} B^\hat{l}
\]

\[
\tilde{E}_A^\hat{l} = \tilde{M}_{AB} \begin{pmatrix} \tilde{v}_b^i & 0 \\ 0 & \tilde{v}^b_i \end{pmatrix} B^\hat{l}
\]
Drinfeld double \(\mathcal{D} \to \) two generalized parallelizable spaces:

\[
\begin{aligned}
\left(\mathcal{D} / \tilde{\mathcal{G}}, \varphi, \tilde{E}_A \right) \\
\left(\mathcal{D} / \mathcal{G}, \varphi, \tilde{E}_A \right)
\end{aligned}
\]

and

\[
\begin{aligned}
\tilde{E}_A = M_A^B \left(\begin{array}{cc}
v^b_i & 0 \\
0 & v_b^i
\end{array} \right) B \tilde{\mathcal{B}}
\end{aligned}
\]

express \(\mathcal{H}^{AB} \) in terms of the generalized \(\hat{\mathcal{H}}^{ij} \) on \(\mathcal{T} \mathcal{D} / \tilde{\mathcal{G}} \oplus \mathcal{T}^{\ast} \mathcal{D} / \tilde{\mathcal{G}} \)

\[
\mathcal{H}^{AB} = \hat{E}_A \hat{\mathcal{H}}^{ij} \hat{E}_B \hat{\mathcal{J}}
\]

with

\[
\hat{\mathcal{H}}^{ij} = \left(\begin{array}{ccc}
g_{ij} & -B_{ik} g^{kl} B_{lk} & -B_{ik} g^{kl} \\
B_{ik} g^{kl} B_{lk} & g_{ik} & B_{kj} \\
g_{ij} & B_{kj} & g_{ij}
\end{array} \right)
\]

express \(d \) in terms of the standard generalized dilaton \(\hat{d} \)

\[
\begin{aligned}
d &= \hat{d} - \frac{1}{2} \log |\det \tilde{v}_{ai}| \\
\hat{d} &= \phi - \frac{1}{4} \log |\det g_{ij}|
\end{aligned}
\]
Equivalence to supergravity: 2. Generalized metric and dilaton

[Klimcik and Severa, 1995; Hull and Reid-Edwards, 2009; du Bosque, Hassler, Lüst, 2017]

- Drinfeld double $\mathcal{D} \rightarrow$ two generalized parallelizable spaces:

\[
\left(\mathcal{D}/\tilde{G}, \circ, \tilde{E}_A^\hat{I} \right) \quad \text{and} \quad \left(\mathcal{D}/G, \circ, \tilde{E}_A^\hat{I} \right)
\]

\[
\tilde{E}_A^\hat{I} = M_A^B \left(\begin{array}{cc} v_{bi} & 0 \\ 0 & v_{b^i} \end{array} \right) B^\hat{I}
\]

- express \mathcal{H}^{AB} in terms of the generalized $\tilde{\mathcal{H}}^{\hat{I}\hat{J}}$ on $TD/\tilde{G} \oplus T^*D/\tilde{G}$

\[
\mathcal{H}^{AB} = \tilde{E}_A^\hat{I} \tilde{\mathcal{H}}^{\hat{I}\hat{J}} \tilde{E}_B^\hat{J}
\]

with

\[
\tilde{\mathcal{H}}^{\hat{I}\hat{J}} = \left(\begin{array}{ccc} g_{ij} - B_{ik} g^{kl} B_{lk} & -B_{ik} g^{kl} \\ g^{ik} B_{kj} & g^{ij} \end{array} \right)
\]

- express d in terms of the standard generalized dilaton \hat{d}

\[
d = \hat{d} - \frac{1}{2} \log |\det \tilde{v}_{ai}|
\]

\[
\hat{d} = \phi - 1/4 \log |\det g_{ij}|
\]

- plug into the DFT action S_{NS}

Motivation
Poisson-Lie T-duality
Double Field Theory
Application
Summary
Equivalence to supergravity: 3. IIA/B bosonic sector action

- If G and \tilde{G} are unimodular

$$S_{NS} = V_{\tilde{G}} \int d^D x \ e^{-2\hat{d}} \left(\frac{1}{8} \hat{H}^{KL} \partial_{\hat{K}} \hat{H}^{\hat{I}\hat{J}} \partial_{\hat{L}} \hat{H}^{\hat{I}\hat{J}} - 2 \partial_{\hat{I}} \hat{d} \partial_{\hat{J}} \hat{H}^{\hat{I}\hat{J}} \right. $$

$$\left. - \frac{1}{2} \hat{H}^{\hat{I}\hat{J}} \partial_{\hat{J}} \hat{H}^{\hat{K}\hat{L}} \partial_{\hat{L}} \hat{H}^{\hat{I}\hat{K}} + 4 \hat{H}^{\hat{I}\hat{J}} \partial_{\hat{I}} \hat{d} \partial_{\hat{J}} \hat{d} \right)$$

- $V_{\tilde{G}} = \int_{\tilde{G}} d\tilde{x}^D \ det \tilde{\nu}_{ai}$ volume of group \tilde{G}
Equivalence to supergravity: 3. IIA/B bosonic sector action

- If G and \tilde{G} are unimodular

$$S_{NS} = V_{\tilde{G}} \int d^D x \ e^{-2\tilde{d}} \left(\frac{1}{8} \hat{\mathcal{H}}^{\hat{K}\hat{L}} \partial_{\hat{K}} \hat{\mathcal{H}}_{\hat{I}\hat{J}} \partial_{\hat{L}} \hat{\mathcal{H}}^{\hat{I}\hat{J}} - 2\partial_{\hat{I}} \hat{d} \partial_{\hat{J}} \hat{\mathcal{H}}^{\hat{I}\hat{J}}
ight)$$

$$\quad - \frac{1}{2} \hat{\mathcal{H}}^{\hat{I}\hat{J}} \partial_{\hat{J}} \hat{\mathcal{H}}^{\hat{K}\hat{L}} \partial_{\hat{L}} \hat{\mathcal{H}}_{\hat{I}\hat{K}} + 4\hat{\mathcal{H}}^{\hat{I}\hat{J}} \partial_{\hat{I}} \hat{d} \partial_{\hat{J}} \hat{d} \right)$$

- $V_{\tilde{G}} = \int_{\tilde{G}} d\tilde{x}^D \ \det \tilde{v}_{ai} \ \text{volume of group} \ \tilde{G}$

- Equivalent to IIA/B NS/NS sector action

 [Hohm, Hull, and Zwiebach, 2010; Hohm, Hull, and Zwiebach, 2010]

$$S_{NS} = V_{\tilde{G}} \int d^D x \ \sqrt{\det(g_{ij})} e^{-2\phi} \left(\mathcal{R} + 4\partial_i \phi \partial^i \phi - \frac{1}{12} H_{ijk} H^{ijk} \right)$$

- Holds for all $\mathcal{H}_{AB}(x^i) / \hat{\mathcal{H}}^{\hat{I}\hat{J}}(x^i)$

- Only D-diffeomorphisms and B-field gauge trans. as symmetries
Equivalence to supergravity: 3. IIA/B bosonic sector action

- if G and \tilde{G} are unimodular
 \[
 S_{\text{NS}} = V_{\tilde{G}} \int d^D x \, e^{-2 \tilde{d}} \left(\frac{1}{8} \hat{H}^{KL} \partial_K \hat{H}^{IJ} \partial_L \hat{H}^{IJ} - 2 \partial_i \tilde{d} \partial_j \hat{H}^{IJ} \right. \\
 \left. - \frac{1}{2} \hat{H}^{IJ} \partial_j \hat{H}^{KL} \partial_L \hat{H}^{IK} + 4 \hat{H}^{IJ} \partial_i \tilde{d} \partial_j \tilde{d} \right)
 \]

- $V_{\tilde{G}} = \int_{\tilde{G}} d\tilde{x}^D \det \tilde{\nu}_{ai}$ volume of group \tilde{G}

- equivalent to IIA/B NS/NS sector action
 [Hohm, Hull, and Zwiebach, 2010; Hohm, Hull, and Zwiebach, 2010]
 \[
 S_{\text{NS}} = V_{\tilde{G}} \int d^D x \sqrt{\det(g_{ij})} e^{-2\phi} (R + 4 \partial_i \phi \partial^i \phi - \frac{1}{12} H_{ijk} H^{ijk})
 \]

- holds for all $\mathcal{H}_{AB}(x^i) / \hat{H}^{IJ}(x^i)$

- only D-diffeomorphisms and B-field gauge trans. as symmetries

- similar story for R/R sector
Restrictions on \mathcal{H}_{AB} and d to admit Poisson-Lie T-duality

- in general $\mathcal{H}_{AB}(x^i) \xrightarrow{\text{Poisson-Lie T-duality (2D-diff.)}} \mathcal{H}_{AB}(x'^i, x'^\tilde{i})$
- $x'^\tilde{i}$ part not compatible with ansatz for SUGRA reduction \rightarrow avoid it
Restrictions on \mathcal{H}_{AB} and d to admit Poisson-Lie T-duality

- in general $\mathcal{H}_{AB}(x^i) \xrightarrow{\text{Poisson-Lie T-duality (2D-diff.)}} \mathcal{H}_{AB}(x'^i, x'^\tilde{i})$

- $x'^\tilde{i}$ part not compatible with ansatz for SUGRA reduction \rightarrow avoid it

A doubled space (D, \mathcal{H}_{AB}, d) admits Poisson-Lie T-dual supergravity descriptions iff

1. $L_\xi \mathcal{H}_{AB} = 0 \quad \forall \xi \quad \rightarrow \quad D_A \mathcal{H}_{AB} = 0$
2. $L_\xi d = 0 \quad \forall \xi \quad \rightarrow \quad D_A e^{-2d} = 0$
Application: Dilaton transformation

\[D_A e^{-2d} = 0 \quad \rightarrow \quad \partial_I \left(2d + \log |\det v| + \log |\det \tilde{v}| \right) = 0 \]
\[= 2\phi_0 = \text{const.} \]
Application: Dilatation transformation

1. \(D_A e^{-2d} = 0 \) \(\rightarrow\) \(\partial_I (2d + \log |\det v| + \log |\det \tilde{v}|) = 0 \)
 \(\Rightarrow\) \(2\phi_0 = \text{const.} \)

2. \(d = \phi - 1/4 \log |\det g| - \frac{1}{2} \log |\det \tilde{v}| \)
 \(\phi = \phi_0 + \frac{1}{4} \log |\det g| - \frac{1}{2} \log |\det v| \)
Application: Dilaton transformation

$D_A e^{-2d} = 0 \quad \rightarrow \quad \partial_I (2d + \log |\det v| + \log |\det \tilde{v}|) = 0$

$= 2\phi_0 = \text{const.}$

$d = \phi - 1/4 \log |\det g| - \frac{1}{2} \log |\det \tilde{v}|$

$\phi = \phi_0 + \frac{1}{4} \log |\det g| - \frac{1}{2} \log |\det v|$

$g = v^T e^T e v \quad \text{with} \quad \begin{cases} (\tilde{B}_0 + \tilde{g}_0)^{ab} = E^{0\,ab} \\ \Pi^{ab} = M^{ac} M^{b\,c} \\ e^{-1} e^{-T} = \tilde{g}_0 - (\tilde{B}_0 + \Pi) \tilde{g}_0^{-1} (\tilde{B}_0 + \Pi) \\ \tilde{e}_0^T \tilde{e}_0 = \tilde{g}_0 \\ e^{-T} = \tilde{e}_0 + \tilde{e}_0^{-T} (\tilde{B}_0 + \Pi) \end{cases}$
Application: Dilaton transformation

- \(D_A e^{-2d} = 0 \quad \rightarrow \quad \partial_I (2d + \log |\det v| + \log |\det \tilde{v}|) = 0 \)

\(= 2\phi_0 = \text{const.} \)

- \(d = \phi - 1/4 \log |\det g| - \frac{1}{2} \log |\det \tilde{v}| \)

\(\phi = \phi_0 + \frac{1}{4} \log |\det g| - \frac{1}{2} \log |\det v| \)

\((\tilde{B}_0 + \tilde{g}_0)^{ab} = E^{0 \, ab} \)

\(\Pi^{ab} = M^{ac} M^{b \, c} \)

\(e^{-1} e^{-T} = \tilde{g}_0 - (\tilde{B}_0 + \Pi)\tilde{g}_0^{-1} (\tilde{B}_0 + \Pi) \)

\(\tilde{e}_0^T \tilde{e}_0 = \tilde{g}_0 \)

\(e^{-T} = \tilde{e}_0 + \tilde{e}_0^{-T} (\tilde{B}_0 + \Pi) \)

- \(\phi = \phi_0 + \frac{1}{2} \log |\det e| = \phi_0 - \frac{1}{2} \log |\det \tilde{e}_0| - \frac{1}{2} \log \left| \det \left(1 + \tilde{g}_0^{-1} (\tilde{B}_0 + \Pi) \right) \right| \)

- reproduces [Jurco and Vysoky, 2017]
Summary

- DFT, Poisson-Lie T-duality and Drinfeld doubles fit together naturally
- interpretation of doubled space does not require winding modes anymore (phase space perspective instead)

Various new directions for research in DFT

- Translation of all the intriguing results in Poisson-Lie T-duality
 [Klimcik and Severa, 1996; Sfetsos, 1998; Klimcik, and Severa, 1996 (momentum ↔ winding); ...]

- Drinfeld doubles → quantum groups → rich mathematical structure

- New way to organized α' corrections?
- New way to construct non-geometric backgrounds?
- Branes in curved space [Klimcik, and Severa, 1996 (D-branes)]
- Facilitates new applications

- Integrable deformations of 2D σ-models (see Daniel's talk)

- Solution generating technique

- Explore underlying structure of AdS/CFT (see Yolandia's talk)
Summary

- DFT, Poisson-Lie T-duality and Drinfeld doubles fit together naturally.
- Interpretation of doubled space does not require winding modes anymore (phase space perspective instead).
- Various new directions for research in DFT.
 - Translation of all the intriguing results in Poisson-Lie T-duality.
 [Klimcik and Severa, 1996; Sfetsos, 1998; Klimcik, and Severa, 1996 (momentum ↔ winding); …]
 - Drinfeld doubles → quantum groups → rich mathematical structure.
 - New way to organize \(\alpha'\) corrections?
 - New way to construct non-geometric backgrounds?
 - Branes in curved space [Klimcik, and Severa, 1996 (D-branes)]?
Summary

- DFT, Poisson-Lie T-duality and Drinfeld doubles fit together naturally
- interpretation of doubled space does not require winding modes anymore (phase space perspective instead)
- various new directions for research in DFT
 - translation of all the intriguing results in Poisson-Lie T-duality
 [Klimcik and Severa, 1996; Sfetsos, 1998; Klimcik and Severa, 1996 (momentum ↔ winding); …]
 - Drinfeld doubles → quantum groups → rich mathematical structure
 - new way to organized α' corrections?
 - new way to construct non-geometric backgrounds?
 - branes in curved space [Klimcik, and Severa, 1996 (D-branes)]?
- facilitates new applications
 - integrable deformations of 2D σ-models (see Daniel’s talk)
 - solution generating technique
 - explore underlying structure of AdS/CFT (see Yolanda’s talk)
Summary

- DFT, Poisson-Lie T-duality and Drinfeld doubles fit together naturally
- Interpretation of doubled space does not require winding modes anymore (phase space perspective instead)
- Various new directions for research in DFT
- Translation of all the intriguing results in Poisson-Lie T-duality
 \[\text{Klimcik and Severa, 1996; Sfetsos, 1998; Klimcik, and Severa, 1996 (momentum ↔ winding);}\ldots\]
- Drinfeld doubles → quantum groups → rich mathematical structure
- New way to organize α' corrections?
- New way to construct non-geometric backgrounds?
- Branes in curved space
 \[\text{Klimcik, and Severa, 1996 (D-branes)}\]
- Facilitates new applications
- Integrable deformations of 2D σ-models (see Daniel’s talk)
- Solution generating technique
- Explore underlying structure of AdS/CFT (see Yolanda’s talk)

Hull and Zwiebach, 2009

Klimcik, 2002
Big picture

- Poisson-Lie
- T-duality
- Double Field Theory
- Generalized parallelizable space
- Drinfeld double
- Worldsheet
- Target space

Double Field Theory

Generalized parallelizable space